Advertisements
Advertisements
Question
If the function f(x) = x3 − 9kx2 + 27x + 30 is increasing on R, then
Options
−1 ≤ k < 1
k < −1 or k > 1
0 < k < 1
−1 < k < 0
Solution
\[f\left( x \right) = x^3 - 9k x^2 + 27x + 30\]
\[f'\left( x \right) = 3 x^2 - 18kx + 27\]
\[ = 3 \left( x^2 - 6kx + 9 \right)\]
\[\text { Given: f(x) is increasing on R } . \]
\[ \Rightarrow f'\left( x \right) > 0 \text { for all } x \in R\]
\[ \Rightarrow 3 \left( x^2 - 6kx + 9 \right) > 0 \text { for all } x \in R\]
\[ \Rightarrow x^2 - 6kx + 9 > 0 \text { for all } x \in R\]
\[ \Rightarrow \left( - 6k \right)^2 - 4\left( 1 \right)\left( 9 \right) < 0 \left[ \because a x^2 + bx + c > \text { 0 for all }x \in R \Rightarrow a > \text{0 and Disc}< 0 \right]\]
\[ \Rightarrow 36 k^2 - 36 < 0\]
\[ \Rightarrow k^2 - 1 < 0\]
\[ \Rightarrow \left( k + 1 \right)\left( k - 1 \right) < 0\]
\[\text { It can be possible when } \left( k + 1 \right) < 0 \text { and } \left( k - 1 \right) > 0 . \]
\[ \Rightarrow k < - 1 \text { and } k > 1 (\text { Not possible })\]
\[or \left( k + 1 \right) > 0 \text { and } \left( k - 1 \right) < 0\]
\[ \Rightarrow k > - 1 \text { and } k < 1\]
\[ \Rightarrow - 1 < k < 1\]
\[\text { Disclaimer: (a) part should be } - 1 < k < 1 \text { instead of }-1 \leq k < 1 .\]
APPEARS IN
RELATED QUESTIONS
The amount of pollution content added in air in a city due to x-diesel vehicles is given by P(x) = 0.005x3 + 0.02x2 + 30x. Find the marginal increase in pollution content when 3 diesel vehicles are added and write which value is indicated in the above question.
Find the intervals in which the following functions are strictly increasing or decreasing:
10 − 6x − 2x2
Let f be a function defined on [a, b] such that f '(x) > 0, for all x ∈ (a, b). Then prove that f is an increasing function on (a, b).
Water is dripping out from a conical funnel of semi-verticle angle `pi/4` at the uniform rate of `2 cm^2/sec`in the surface, through a tiny hole at the vertex of the bottom. When the slant height of the water level is 4 cm, find the rate of decrease of the slant height of the water.
Show that f(x) = \[\frac{1}{1 + x^2}\] decreases in the interval [0, ∞) and increases in the interval (−∞, 0] ?
Find the interval in which the following function are increasing or decreasing f(x) = 8 + 36x + 3x2 − 2x3 ?
Find the interval in which the following function are increasing or decreasing f(x) = 2x3 − 9x2 + 12x − 5 ?
Find the interval in which the following function are increasing or decreasing f(x) = x3 − 12x2 + 36x + 17 ?
Show that the function f(x) = sin (2x + π/4) is decreasing on (3π/8, 5π/8) ?
State when a function f(x) is said to be increasing on an interval [a, b]. Test whether the function f(x) = x2 − 6x + 3 is increasing on the interval [4, 6] ?
Prove that the function f(x) = cos x is:
(i) strictly decreasing in (0, π)
(ii) strictly increasing in (π, 2π)
(iii) neither increasing nor decreasing in (0, 2π).
Find the interval in which f(x) is increasing or decreasing f(x) = x|x|, x \[\in\] R ?
What are the values of 'a' for which f(x) = ax is decreasing on R ?
Find the values of 'a' for which the function f(x) = sin x − ax + 4 is increasing function on R ?
Write the set of values of a for which the function f(x) = ax + b is decreasing for all x ∈ R ?
If the function f(x) = 2x2 − kx + 5 is increasing on [1, 2], then k lies in the interval
Let f(x) = x3 − 6x2 + 15x + 3. Then,
If the function f(x) = kx3 − 9x2 + 9x + 3 is monotonically increasing in every interval, then
Function f(x) = loga x is increasing on R, if
Show that f(x) = cos x is a decreasing function on (0, π), increasing in (−π, 0) and neither increasing nor decreasing in (−π, π).
Find the intervals in which function f given by f(x) = 4x3 - 6x2 - 72x + 30 is (a) strictly increasing, (b) strictly decresing .
The total cost of manufacturing x articles is C = 47x + 300x2 − x4. Find x, for which average cost is increasing.
Find the values of x for which the following func- tions are strictly increasing : f(x) = x3 – 6x2 – 36x + 7
Find the values of x for which the function f(x) = x3 – 12x2 – 144x + 13 (a) increasing (b) decreasing
For manufacturing x units, labour cost is 150 – 54x and processing cost is x2. Price of each unit is p = 10800 – 4x2. Find the values of x for which Revenue is increasing.
Test whether the following function f(x) = 2 – 3x + 3x2 – x3, x ∈ R is increasing or decreasing
Find the values of x for which the function f(x) = 2x3 – 6x2 + 6x + 24 is strictly increasing
Find the values of x for which f(x) = 2x3 – 15x2 – 144x – 7 is
(a) Strictly increasing
(b) strictly decreasing
A ladder 20 ft Jong leans against a vertical wall. The top-end slides downwards at the rate of 2 ft per second. The rate at which the lower end moves on a horizontal floor when it is 12 ft from the wall is ______
The sides of a square are increasing at the rate of 0.2 cm/sec. When the side is 25cm long, its area is increasing at the rate of ______
Given P(x) = x4 + ax3 + bx2 + cx + d such that x = 0 is the only real root of P'(x) = 0. If P(-1) < P(1), then in the interval [-1, 1] ______
Show that f(x) = tan–1(sinx + cosx) is an increasing function in `(0, pi/4)`
The function f(x) = 4 sin3x – 6 sin2x + 12 sinx + 100 is strictly ______.
If f(x) = sin x – cos x, then interval in which function is decreasing in 0 ≤ x ≤ 2 π, is:
Find the value of x for which the function f(x)= 2x3 – 9x2 + 12x + 2 is decreasing.
Given f(x) = 2x3 – 9x2 + 12x + 2
∴ f'(x) = `squarex^2 - square + square`
∴ f'(x) = `6(x - 1)(square)`
Now f'(x) < 0
∴ 6(x – 1)(x – 2) < 0
Since ab < 0 ⇔a < 0 and b < 0 or a > 0 and b < 0
Case 1: (x – 1) < 0 and (x – 2) < 0
∴ x < `square` and x > `square`
Which is contradiction
Case 2: x – 1 and x – 2 < 0
∴ x > `square` and x < `square`
1 < `square` < 2
f(x) is decreasing if and only if x ∈ `square`
Function f(x) = x100 + sinx – 1 is increasing for all x ∈ ______.
A function f is said to be increasing at a point c if ______.
Read the following passage:
The use of electric vehicles will curb air pollution in the long run. V(t) = `1/5 t^3 - 5/2 t^2 + 25t - 2` where t represents the time and t = 1, 2, 3, ...... corresponds to years 2001, 2002, 2003, ...... respectively. |
Based on the above information, answer the following questions:
- Can the above function be used to estimate number of vehicles in the year 2000? Justify. (2)
- Prove that the function V(t) is an increasing function. (2)
Find the interval/s in which the function f : R `rightarrow` R defined by f(x) = xex, is increasing.