English

If the Function F(X) = X3 − 9kx2 + 27x + 30 is Increasing on R, Then - Mathematics

Advertisements
Advertisements

Question

If the function f(x) = x3 − 9kx2 + 27x + 30 is increasing on R, then

Options

  • −1 ≤ k < 1

  •  k < −1 or k > 1

  • 0 < k < 1

  • −1 < k < 0

MCQ

Solution

 

\[f\left( x \right) = x^3 - 9k x^2 + 27x + 30\]

\[f'\left( x \right) = 3 x^2 - 18kx + 27\]

\[ = 3 \left( x^2 - 6kx + 9 \right)\]

\[\text { Given: f(x) is increasing on R } . \]

\[ \Rightarrow f'\left( x \right) > 0 \text { for all } x \in R\]

\[ \Rightarrow 3 \left( x^2 - 6kx + 9 \right) > 0 \text { for all } x \in R\]

\[ \Rightarrow x^2 - 6kx + 9 > 0 \text { for all } x \in R\]

\[ \Rightarrow \left( - 6k \right)^2 - 4\left( 1 \right)\left( 9 \right) < 0 \left[ \because a x^2 + bx + c >  \text { 0 for all }x \in R \Rightarrow a > \text{0 and Disc}< 0 \right]\]

\[ \Rightarrow 36 k^2 - 36 < 0\]

\[ \Rightarrow k^2 - 1 < 0\]

\[ \Rightarrow \left( k + 1 \right)\left( k - 1 \right) < 0\]

\[\text { It can be possible when } \left( k + 1 \right) < 0 \text { and } \left( k - 1 \right) > 0 . \]

\[ \Rightarrow k < - 1 \text { and } k > 1 (\text { Not possible })\]

\[or \left( k + 1 \right) > 0 \text { and } \left( k - 1 \right) < 0\]

\[ \Rightarrow k > - 1 \text { and } k < 1\]

\[ \Rightarrow - 1 < k < 1\]

\[\text { Disclaimer: (a) part should be } - 1 < k < 1 \text { instead of }-1 \leq k < 1 .\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 17: Increasing and Decreasing Functions - Exercise 17.4 [Page 42]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 17 Increasing and Decreasing Functions
Exercise 17.4 | Q 29 | Page 42

RELATED QUESTIONS

The amount of pollution content added in air in a city due to x-diesel vehicles is given by P(x) = 0.005x3 + 0.02x2 + 30x. Find the marginal increase in pollution content when 3 diesel vehicles are added and write which value is indicated in the above question.


Find the intervals in which the following functions are strictly increasing or decreasing:

10 − 6x − 2x2


Let f be a function defined on [a, b] such that f '(x) > 0, for all x ∈ (a, b). Then prove that f is an increasing function on (a, b).


Water is dripping out from a conical funnel of semi-verticle angle `pi/4` at the uniform rate of `2 cm^2/sec`in the surface, through a tiny hole at the vertex of the bottom. When the slant height of the water level is 4 cm, find the rate of decrease of the slant height of the water.


Show that f(x) = \[\frac{1}{1 + x^2}\] decreases in the interval [0, ∞) and increases in the interval (−∞, 0] ?


Find the interval in which the following function are increasing or decreasing f(x) = 8 + 36x + 3x2 − 2x?


Find the interval in which the following function are increasing or decreasing f(x) = 2x3 − 9x2 + 12x − 5 ?


Find the interval in which the following function are increasing or decreasing f(x) = x3 − 12x2 + 36x + 17 ?


Show that the function f(x) = sin (2x + π/4) is decreasing on (3π/8, 5π/8) ?


State when a function f(x) is said to be increasing on an interval [a, b]. Test whether the function f(x) = x2 − 6x + 3 is increasing on the interval [4, 6] ?


Prove that the function f(x) = cos x is:
(i) strictly decreasing in (0, π)
(ii) strictly increasing in (π, 2π)
(iii) neither increasing nor decreasing in (0, 2π).


Find the interval in which f(x) is increasing or decreasing f(x) = x|x|, x \[\in\] R ?


What are the values of 'a' for which f(x) = ax is decreasing on R ? 


Find the values of 'a' for which the function f(x) = sin x − ax + 4 is increasing function on R ?


Write the set of values of a for which the function f(x) = ax + b is decreasing for all x ∈ R ?


If the function f(x) = 2x2 − kx + 5 is increasing on [1, 2], then k lies in the interval


Let f(x) = x3 − 6x2 + 15x + 3. Then,


If the function f(x) = kx3 − 9x2 + 9x + 3 is monotonically increasing in every interval, then


Function f(x) = loga x is increasing on R, if


Show that f(x) = cos x is a decreasing function on (0, π), increasing in (−π, 0) and neither increasing nor decreasing in (−π, π).


Find the intervals in which function f given by f(x)  = 4x3 - 6x2 - 72x + 30 is (a) strictly increasing, (b) strictly decresing .


The total cost of manufacturing x articles is C = 47x + 300x2 − x4.  Find x, for which average cost is increasing.


Find the values of x for which the following func- tions are strictly increasing : f(x) = x3 – 6x2 – 36x + 7


Find the values of x for which the function f(x) = x3 – 12x2 – 144x + 13 (a) increasing (b) decreasing


For manufacturing x units, labour cost is 150 – 54x and processing cost is x2. Price of each unit is p = 10800 – 4x2. Find the values of x for which Revenue is increasing.


Test whether the following function f(x) = 2 – 3x + 3x2 – x3, x ∈ R is increasing or decreasing


Find the values of x for which the function f(x) = 2x3 – 6x2 + 6x + 24 is strictly increasing


Find the values of x for which f(x) = 2x3 – 15x2 – 144x – 7 is

(a) Strictly increasing
(b) strictly decreasing


A ladder 20 ft Jong leans against a vertical wall. The top-end slides downwards at the rate of 2 ft per second. The rate at which the lower end moves on a horizontal floor when it is 12 ft from the wall is ______ 


The sides of a square are increasing at the rate of 0.2 cm/sec. When the side is 25cm long, its area is increasing at the rate of ______


Given P(x) = x4 + ax3 + bx2 + cx + d such that x = 0 is the only real root of P'(x) = 0. If P(-1) < P(1), then in the interval [-1, 1] ______


Show that f(x) = tan–1(sinx + cosx) is an increasing function in `(0, pi/4)`


The function f(x) = 4 sin3x – 6 sin2x + 12 sinx + 100 is strictly ______.


If f(x) = sin x – cos x, then interval in which function is decreasing in 0 ≤ x ≤ 2 π, is:


Find the value of x for which the function f(x)= 2x3 – 9x2 + 12x + 2 is decreasing.

Given f(x) = 2x3 – 9x2 + 12x + 2

∴ f'(x) = `squarex^2 - square + square`

∴ f'(x) = `6(x - 1)(square)`

Now f'(x) < 0

∴ 6(x – 1)(x – 2) < 0

Since ab < 0 ⇔a < 0 and b < 0 or a > 0 and b < 0

Case 1: (x – 1) < 0 and (x – 2) < 0

∴ x < `square` and x > `square`

Which is contradiction

Case 2: x – 1 and x – 2 < 0

∴ x > `square` and x < `square`

1 < `square` < 2

f(x) is decreasing if and only if x ∈ `square`


Function f(x) = x100 + sinx – 1 is increasing for all x ∈ ______.


A function f is said to be increasing at a point c if ______.


Read the following passage:

The use of electric vehicles will curb air pollution in the long run.

The use of electric vehicles is increasing every year and the estimated electric vehicles in use at any time t is given by the function V:

V(t) = `1/5 t^3 - 5/2 t^2 + 25t - 2`

where t represents the time and t = 1, 2, 3, ...... corresponds to years 2001, 2002, 2003, ...... respectively.

Based on the above information, answer the following questions:

  1. Can the above function be used to estimate number of vehicles in the year 2000? Justify. (2)
  2. Prove that the function V(t) is an increasing function. (2)

Find the interval/s in which the function f : R `rightarrow` R defined by f(x) = xex, is increasing.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×