Advertisements
Advertisements
Question
Show that f(x) = tan–1(sinx + cosx) is an increasing function in `(0, pi/4)`
Solution
Given that: f(x) = tan–1(sinx + cosx) in `(0, pi/4)`
Differentiating both sides w.r.t. x, we get
f'(x) = `1/(1 + (sin x + cos x)^2) * "d"/"dx" (sinx + cos x)`
⇒ f'(x) = `(1 xx (cos x - sinx))/(1 + (sinx + cosx)^2`
⇒ f'(x) = `(cosx - sinx)/(1 + sin^2x + cos^2x + 2 sin x cos x)`
⇒ f'(x) = `(cosx - sinx)/(1 + 1 + 2 sinx cosx)`
⇒ f'(x) = `(cosx - sinx)/(2 + 2 sinx cosx)`
For an increasing function f '(x) ≥ 0
∴ `(cosx - sinx)/(2 + 2 sinx cosx) ≥ 0`
⇒ cos x – sin x ≥ 0 ....`[because (2 + sin2x) ≥ "in" (0, pi/4)]`
⇒ cos x ≥ sin x, which is true for `(0, pi/4)`
Hence, the given function f(x) is an increasing function in `(0, pi/4)`.
APPEARS IN
RELATED QUESTIONS
Find the intervals in which the following functions are strictly increasing or decreasing:
6 − 9x − x2
Show that y = `log(1+x) - (2x)/(2+x), x> - 1`, is an increasing function of x throughout its domain.
Find the interval in which the following function are increasing or decreasing f(x) = 8 + 36x + 3x2 − 2x3 ?
Find the interval in which the following function are increasing or decreasing f(x) = −2x3 − 9x2 − 12x + 1 ?
Find the interval in which the following function are increasing or decreasing f(x) = 2x3 − 24x + 7 ?
Show that f(x) = e2x is increasing on R.
Prove that the following function is increasing on R f \[(x) =\]3 \[x^5\] + 40 \[x^3\] + 240\[x\] ?
Prove that the following function is increasing on R f \[f\left( x \right) = 4 x^3 - 18 x^2 + 27x - 27\] ?
Prove that the function f given by f(x) = log cos x is strictly increasing on (−π/2, 0) and strictly decreasing on (0, π/2) ?
The function f(x) = 2 log (x − 2) − x2 + 4x + 1 increases on the interval
Function f(x) = x3 − 27x + 5 is monotonically increasing when
f(x) = 2x − tan−1 x − log \[\left\{ x + \sqrt{x^2 + 1} \right\}\] is monotonically increasing when
The function f(x) = −x/2 + sin x defined on [−π/3, π/3] is
If x = cos2 θ and y = cot θ then find `dy/dx at θ=pi/4`
Find the intervals in which function f given by f(x) = 4x3 - 6x2 - 72x + 30 is (a) strictly increasing, (b) strictly decresing .
The total cost of manufacturing x articles is C = 47x + 300x2 − x4. Find x, for which average cost is increasing.
Find the intervals in which the function `f("x") = (4sin"x")/(2+cos"x") -"x";0≤"x"≤2pi` is strictly increasing or strictly decreasing.
Find the values of x for which the following functions are strictly decreasing : f(x) = `x + (25)/x`
Find the value of x, such that f(x) is increasing function.
f(x) = 2x3 - 15x2 - 144x - 7
Show that f(x) = x – cos x is increasing for all x.
Find the values of x for which the function f(x) = 2x3 – 6x2 + 6x + 24 is strictly increasing
Find the values of x for which the function f(x) = x3 – 6x2 – 36x + 7 is strictly increasing
Find the values of x, for which the function f(x) = x3 + 12x2 + 36𝑥 + 6 is monotonically decreasing
For every value of x, the function f(x) = `1/7^x` is ______
Prove that the function f(x) = tanx – 4x is strictly decreasing on `((-pi)/3, pi/3)`
The function f(x) = `(2x^2 - 1)/x^4`, x > 0, decreases in the interval ______.
Let f be a real valued function defined on (0, 1) ∪ (2, 4) such that f '(x) = 0 for every x, then ____________.
The function f: N → N, where
f(n) = `{{:(1/2(n + 1), "If n is sold"),(1/2n, "if n is even"):}` is
A function f is said to be increasing at a point c if ______.