English

Find the Intervals in Which Function F Given by F(X) = 4x3 - 6x2 - 72x + 30 is (A) Strictly Increasing, (B) Strictly Decresing . - Mathematics

Advertisements
Advertisements

Question

Find the intervals in which function f given by f(x)  = 4x3 - 6x2 - 72x + 30 is (a) strictly increasing, (b) strictly decresing .

Sum

Solution

f(x)  = 4x3 - 6x2 - 72x + 30 

f'(x) = 12 x - 12x - 72

(a) For strictly increasing funciton

f;(x) > 0

12x2 - 12x - 72 >0

x- x - 6 > 0 .

x - 3x +2x - 6>0 

(x - 3) (x + 2) > 0

⇒ x ∈ (-∞ , - 2) ∪ (3 , ∞)

(b) For strictly decreasing function 

f '(x) < 0

12 x- 12x - 72 < 0

x - x-6 < 0

(x + 2 ) (x - 3) < 0

⇒ x ∈ ( -2 , 3 ) 

shaalaa.com
  Is there an error in this question or solution?
2018-2019 (March) 65/3/3

RELATED QUESTIONS

Find the value(s) of x for which y = [x(x − 2)]2 is an increasing function.


Prove that the function f given by f(x) = log cos x is strictly decreasing on `(0, pi/2)` and strictly increasing on `((3pi)/2, 2pi).`


Prove that the function f(x) = loga x is increasing on (0, ∞) if a > 1 and decreasing on (0, ∞), if 0 < a < 1 ?


Show that f(x) = \[\frac{1}{1 + x^2}\] is neither increasing nor decreasing on R ?


Find the interval in which the following function are increasing or decreasing f(x) = 6 + 12x + 3x2 − 2x3 ?


Find the interval in which the following function are increasing or decreasing  f(x) = 2x3 − 24x + 7 ?


Find the interval in which the following function are increasing or decreasing f(x) = x4 − 4x ?


Show that the function f(x) = cot \[-\] l(sinx + cosx) is decreasing on \[\left( 0, \frac{\pi}{4} \right)\] and increasing on \[\left( 0, \frac{\pi}{4} \right)\] ?


Prove that the function f(x) = x3 − 6x2 + 12x − 18 is increasing on R ?


Find the intervals in which f(x) = (x + 2) e−x is increasing or decreasing ?


Find the set of values of 'b' for which f(x) = b (x + cos x) + 4 is decreasing on R ?


Let f(x) = x3 − 6x2 + 15x + 3. Then,


Function f(x) = cos x − 2 λ x is monotonic decreasing when


Show that the function f given by f(x) = tan–1 (sin x + cos x) is decreasing for all \[x \in \left( \frac{\pi}{4}, \frac{\pi}{2} \right) .\]


The total cost of manufacturing x articles is C = 47x + 300x2 − x4.  Find x, for which average cost is increasing.


Prove that y = `(4sinθ)/(2 + cosθ) - θ` is an increasing function if `θ ∈[0, pi/2]`


Solve the following:

Find the intervals on which the function f(x) = `x/logx` is increasing and decreasing.


Find the value of x, such that f(x) is increasing function.

f(x) = x2 + 2x - 5 


If the function f(x) = `7/x - 3`, x ∈ R, x ≠ 0 is a decreasing function, then x ∈ ______


Find the values of x such that f(x) = 2x3 – 15x2 – 144x – 7 is decreasing function


For which interval the given function f(x) = 2x3 – 9x2 + 12x + 7 is increasing?


Let f(x) = x3 + 9x2 + 33x + 13, then f(x) is ______.


The function f(x) = tanx – x ______.


Let `"f (x) = x – cos x, x" in "R"`, then f is ____________.


The function which is neither decreasing nor increasing in `(pi/2,(3pi)/2)` is ____________.


`"f"("x") = (("e"^(2"x") - 1)/("e"^(2"x") + 1))` is ____________.


Find the value of x for which the function f(x)= 2x3 – 9x2 + 12x + 2 is decreasing.

Given f(x) = 2x3 – 9x2 + 12x + 2

∴ f'(x) = `squarex^2 - square + square`

∴ f'(x) = `6(x - 1)(square)`

Now f'(x) < 0

∴ 6(x – 1)(x – 2) < 0

Since ab < 0 ⇔a < 0 and b < 0 or a > 0 and b < 0

Case 1: (x – 1) < 0 and (x – 2) < 0

∴ x < `square` and x > `square`

Which is contradiction

Case 2: x – 1 and x – 2 < 0

∴ x > `square` and x < `square`

1 < `square` < 2

f(x) is decreasing if and only if x ∈ `square`


The function f(x) = `(4x^3 - 3x^2)/6 - 2sinx + (2x - 1)cosx` ______.


Find the interval/s in which the function f : R `rightarrow` R defined by f(x) = xex, is increasing.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×
Our website is made possible by ad-free subscriptions or displaying online advertisements to our visitors.
If you don't like ads you can support us by buying an ad-free subscription or please consider supporting us by disabling your ad blocker. Thank you.