Advertisements
Advertisements
Question
Find the intervals in which function f given by f(x) = 4x3 - 6x2 - 72x + 30 is (a) strictly increasing, (b) strictly decresing .
Solution
f(x) = 4x3 - 6x2 - 72x + 30
f'(x) = 12 x2 - 12x - 72
(a) For strictly increasing funciton
f;(x) > 0
12x2 - 12x - 72 >0
x2 - x - 6 > 0 .
x2 - 3x +2x - 6>0
(x - 3) (x + 2) > 0
⇒ x ∈ (-∞ , - 2) ∪ (3 , ∞)
(b) For strictly decreasing function
f '(x) < 0
12 x2 - 12x - 72 < 0
x2 - x-6 < 0
(x + 2 ) (x - 3) < 0
⇒ x ∈ ( -2 , 3 )
APPEARS IN
RELATED QUESTIONS
Find the value(s) of x for which y = [x(x − 2)]2 is an increasing function.
Prove that the function f given by f(x) = log cos x is strictly decreasing on `(0, pi/2)` and strictly increasing on `((3pi)/2, 2pi).`
Prove that the function f(x) = loga x is increasing on (0, ∞) if a > 1 and decreasing on (0, ∞), if 0 < a < 1 ?
Show that f(x) = \[\frac{1}{1 + x^2}\] is neither increasing nor decreasing on R ?
Find the interval in which the following function are increasing or decreasing f(x) = 6 + 12x + 3x2 − 2x3 ?
Find the interval in which the following function are increasing or decreasing f(x) = 2x3 − 24x + 7 ?
Find the interval in which the following function are increasing or decreasing f(x) = x4 − 4x ?
Show that the function f(x) = cot \[-\] l(sinx + cosx) is decreasing on \[\left( 0, \frac{\pi}{4} \right)\] and increasing on \[\left( 0, \frac{\pi}{4} \right)\] ?
Prove that the function f(x) = x3 − 6x2 + 12x − 18 is increasing on R ?
Find the intervals in which f(x) = (x + 2) e−x is increasing or decreasing ?
Find the set of values of 'b' for which f(x) = b (x + cos x) + 4 is decreasing on R ?
Let f(x) = x3 − 6x2 + 15x + 3. Then,
Function f(x) = cos x − 2 λ x is monotonic decreasing when
Show that the function f given by f(x) = tan–1 (sin x + cos x) is decreasing for all \[x \in \left( \frac{\pi}{4}, \frac{\pi}{2} \right) .\]
The total cost of manufacturing x articles is C = 47x + 300x2 − x4. Find x, for which average cost is increasing.
Prove that y = `(4sinθ)/(2 + cosθ) - θ` is an increasing function if `θ ∈[0, pi/2]`
Solve the following:
Find the intervals on which the function f(x) = `x/logx` is increasing and decreasing.
Find the value of x, such that f(x) is increasing function.
f(x) = x2 + 2x - 5
If the function f(x) = `7/x - 3`, x ∈ R, x ≠ 0 is a decreasing function, then x ∈ ______
Find the values of x such that f(x) = 2x3 – 15x2 – 144x – 7 is decreasing function
For which interval the given function f(x) = 2x3 – 9x2 + 12x + 7 is increasing?
Let f(x) = x3 + 9x2 + 33x + 13, then f(x) is ______.
The function f(x) = tanx – x ______.
Let `"f (x) = x – cos x, x" in "R"`, then f is ____________.
The function which is neither decreasing nor increasing in `(pi/2,(3pi)/2)` is ____________.
`"f"("x") = (("e"^(2"x") - 1)/("e"^(2"x") + 1))` is ____________.
Find the value of x for which the function f(x)= 2x3 – 9x2 + 12x + 2 is decreasing.
Given f(x) = 2x3 – 9x2 + 12x + 2
∴ f'(x) = `squarex^2 - square + square`
∴ f'(x) = `6(x - 1)(square)`
Now f'(x) < 0
∴ 6(x – 1)(x – 2) < 0
Since ab < 0 ⇔a < 0 and b < 0 or a > 0 and b < 0
Case 1: (x – 1) < 0 and (x – 2) < 0
∴ x < `square` and x > `square`
Which is contradiction
Case 2: x – 1 and x – 2 < 0
∴ x > `square` and x < `square`
1 < `square` < 2
f(x) is decreasing if and only if x ∈ `square`
The function f(x) = `(4x^3 - 3x^2)/6 - 2sinx + (2x - 1)cosx` ______.
Find the interval/s in which the function f : R `rightarrow` R defined by f(x) = xex, is increasing.