English

Show that the Relation R on the Set Z of Integers, Given by R = {(A,B):2divides (A - B)} is an Equivalence Relation. - Mathematics

Advertisements
Advertisements

Question

Show that the relation R on the set Z of integers, given by R = {(a,b):2divides (a - b)} is an equivalence relation. 

Sum

Solution

The relation R on Z is given by R = {(a,b) :2divides a - b}.
We observe the following properties of relation R.
Refelxivity : For any a ∈ Z

a - a = 0 = 0 × 2
⇒ 2 divides a - a
⇒  (a, a) ∈  R
So, R is a reflexive relation on Z.

Symmetry: Let a,b ∈ Z be such that
(a,b) ∈  R
⇒ 2 divides a - b
⇒ a - b = 2λ for some  λ ∈ Z
⇒ b -  a = 2(- λ ),where - λ ∈ Z

⇒ 2 divides b -  a 

⇒ (b, a) ∈ R

Thus, (a,b) ∈ R  ⇒ (b, a) ∈ R. So, R is a symmetric relation on Z.
Transitivity: Let a,b, c ∈ Z be such that (a,b) ∈ R and (b, c) ∈ R. Then,

(a,b) ∈ R ⇒ 2 divides a  - b ⇒ a  - b =  2λ for some λ ∈ Z
and (b, c) ∈ R ⇒ 2 divides b - c ⇒ b - c  = 2 μ for some μ ∈ Z
a - b + b - c = 2( λ + μ  )
2 divides a - c
⇒ (a, c) ∈ R
Thus, (a,b) ∈ R and (b, c) ∈ R ⇒ (a, c) ∈ R.
So, R is a transitive relation on Z.
Since R is symmetric and transitive
reflexive therefore an equivalence relation
Hence, R is a transitive relation on Z.

shaalaa.com
  Is there an error in this question or solution?
2018-2019 (March) 65/3/3

RELATED QUESTIONS

determination of whether the following relations are reflexive, symmetric, and transitive:

Relation R in the set A of human beings in a town at a particular time given by (c) R = {(x, y): x is exactly 7 cm taller than y}


Show that the relation R in the set {1, 2, 3} given by R = {(1, 2), (2, 1)} is symmetric but neither reflexive nor transitive.


Let A = {1, 2, 3}. Then number of relations containing (1, 2) and (1, 3) which are reflexive and symmetric but not transitive is

(A) 1 (B) 2 (C) 3 (D) 4


Test whether the following relation R2 is (i) reflexive (ii) symmetric and (iii) transitive:

R2 on Z defined by (a, b) ∈ R2 ⇔ |a – b| ≤ 5


Prove that every identity relation on a set is reflexive, but the converse is not necessarily true.


Let A = {1, 2, 3} and R = {(1, 2), (1, 1), (2, 3)} be a relation on A. What minimum number of ordered pairs may be added to R so that it may become a transitive relation on A.


Let R be a relation on the set A of ordered pair of integers defined by (x, y) R (u, v) if xv = yu. Show that R is an equivalence relation.


Let O be the origin. We define a relation between two points P and Q in a plane if OP = OQ. Show that the relation, so defined is an equivalence relation.


If R = {(x, y) : x2 + y2 ≤ 4; x, y ∈ Z} is a relation on Z, write the domain of R.


Write the smallest reflexive relation on set A = {1, 2, 3, 4}.


If R = {(x, y) : x + 2y = 8} is a relation on N by, then write the range of R.


Let R = {(x, y) : |x2 − y2| <1) be a relation on set A = {1, 2, 3, 4, 5}. Write R as a set of ordered pairs.


Let A = {2, 3, 4, 5} and B = {1, 3, 4}. If R is the relation from A to B given by a R b if "a is a divisor of b". Write R as a set of ordered pairs.


Let R be the relation over the set of all straight lines in a plane such that  l1 R l2 ⇔ l 1⊥ l2. Then, R is _____________ .


The relation 'R' in N × N such that
(a, b) R (c, d) ⇔ a + d = b + c is ______________ .


R is a relation from {11, 12, 13} to {8, 10, 12} defined by y = x − 3. Then, R−1 is ______________ .


Let R be the relation on the set A = {1, 2, 3, 4} given by R = {(1, 2), (2, 2), (1, 1), (4, 4), (1, 3), (3, 3), (3, 2)}. Then, _____________________ .


For the matrix A = `[(2,3),(5,7)]`, find (A + A') and verify that it is a symmetric matrix.


If A = {a, b, c}, B = (x , y} find B × A.


Let A = {1, 2, 3, 4}, B = {4, 5, 6}, C = {5, 6} Find (A × B) ∩ (A × C).


Let A = {6, 8} and B = {1, 3, 5}.
Let R = {(a, b)/a∈ A, b∈ B, a – b is an even number}. Show that R is an empty relation from A to B.


If A = {1, 2, 3, 4 }, define relations on A which have properties of being: 
reflexive, symmetric and transitive


Let the relation R be defined in N by aRb if 2a + 3b = 30. Then R = ______.


Let A = { 2, 3, 6 } Which of the following relations on A are reflexive?


Let A = {1, 2, 3}, then the domain of the relation R = {(1, 1), (2, 3), (2, 1)} defined on A is ____________.


Let S = {1, 2, 3, 4, 5} and let A = S x S. Define the relation R on A as follows:
(a, b) R (c, d) iff ad = cb. Then, R is ____________.


Let A = {x : -1 ≤ x ≤ 1} and f : A → A is a function defined by f(x) = x |x| then f is ____________.


An organization conducted a bike race under 2 different categories-boys and girls. Totally there were 250 participants. Among all of them finally, three from Category 1 and two from Category 2 were selected for the final race. Ravi forms two sets B and G with these participants for his college project. Let B = {b1,b2,b3} G={g1,g2} where B represents the set of boys selected and G the set of girls who were selected for the final race.

Ravi decides to explore these sets for various types of relations and functions.

  • Ravi wishes to form all the relations possible from B to G. How many such relations are possible?

Students of Grade 9, planned to plant saplings along straight lines, parallel to each other to one side of the playground ensuring that they had enough play area. Let us assume that they planted one of the rows of the saplings along the line y = x − 4. Let L be the set of all lines which are parallel on the ground and R be a relation on L.

Answer the following using the above information.

  • Let R = {(L1, L2 ): L1 is parallel to L2 and L1: y = x – 4} then which of the following can be taken as L2?

Let A = {3, 5}. Then number of reflexive relations on A is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×