Advertisements
Advertisements
Question
Let O be the origin. We define a relation between two points P and Q in a plane if OP = OQ. Show that the relation, so defined is an equivalence relation.
Solution
Let A be the set of all points in a plane such that
A={P : P is a point in the plane}
Let R be the relation such that R={(P, Q) : P, Q∈A and OP=OQ, where O is the origin}
We observe the following properties of R.
Reflexivity: Let P be an arbitrary element of R.
The distance of a point P will remain the same from the origin.
So, OP = OP
⇒ (P, P) ∈ R
So, R is reflexive on A.
Symmetry : Let (P, Q) ∈ R
⇒ OP = OQ
⇒ OQ = OP
⇒ (Q, P) ∈ R
So, R is symmetric on A.
Transitivity: Let (P, Q), (Q, R) ∈ R
⇒ OP= OQ and OQ = OR
⇒ OP= OQ = OR
⇒ OP = OR
⇒ (P, R) ∈ R
So, R is transitive on A.
Hence, R is an equivalence relation on A.
APPEARS IN
RELATED QUESTIONS
If R=[(x, y) : x+2y=8] is a relation on N, write the range of R.
determination of whether the following relations are reflexive, symmetric, and transitive:
Relation R in the set N of natural numbers defined as
R = {(x, y): y = x + 5 and x < 4}
Given an example of a relation. Which is Reflexive and transitive but not symmetric.
Given an example of a relation. Which is Symmetric and transitive but not reflexive.
Three relations R1, R2 and R3 are defined on a set A = {a, b, c} as follows:
R1 = {(a, a), (a, b), (a, c), (b, b), (b, c), (c, a), (c, b), (c, c)}
R2 = {(a, a)}
R3 = {(b, c)}
R4 = {(a, b), (b, c), (c, a)}.
Find whether or not each of the relations R1, R2, R3, R4 on A is (i) reflexive (ii) symmetric and (iii) transitive.
If A = {1, 2, 3, 4} define relations on A which have properties of being reflexive, transitive but not symmetric ?
Give an example of a relation which is symmetric and transitive but not reflexive?
Give an example of a relation which is symmetric but neither reflexive nor transitive?
Give an example of a relation which is transitive but neither reflexive nor symmetric?
Defines a relation on N :
xy is square of an integer, x, y ∈ N
Determine the above relation is reflexive, symmetric and transitive.
Defines a relation on N:
x + 4y = 10, x, y ∈ N
Determine the above relation is reflexive, symmetric and transitive.
Let R be a relation on the set A of ordered pair of integers defined by (x, y) R (u, v) if xv = yu. Show that R is an equivalence relation.
If R = {(x, y) : x + 2y = 8} is a relation on N by, then write the range of R.
If A = {2, 3, 4}, B = {1, 3, 7} and R = {(x, y) : x ∈ A, y ∈ B and x < y} is a relation from A to B, then write R−1.
R is a relation on the set Z of integers and it is given by
(x, y) ∈ R ⇔ | x − y | ≤ 1. Then, R is ______________ .
If R is a relation on the set A = {1, 2, 3} given by R = {(1, 1), (2, 2), (3, 3)}, then R is ____________ .
Let R be the relation on the set A = {1, 2, 3, 4} given by R = {(1, 2), (2, 2), (1, 1), (4, 4), (1, 3), (3, 3), (3, 2)}. Then, _____________________ .
Mark the correct alternative in the following question:
Let T be the set of all triangles in the Euclidean plane, and let a relation R on T be defined as aRb if a is congruent to b for all a, b T. Then, R is ____________ .
Mark the correct alternative in the following question:
For real numbers x and y, define xRy if `x-y+sqrt2` is an irrational number. Then the relation R is ___________ .
Show that the relation R on R defined as R = {(a, b): a ≤ b}, is reflexive, and transitive but not symmetric.
For the matrix A = `[(2,3),(5,7)]`, find (A + A') and verify that it is a symmetric matrix.
If A = {a, b, c}, B = (x , y} find A × B.
If A = {a, b, c}, B = (x , y} find B × A.
Let A = {0, 1, 2, 3} and define a relation R on A as follows: R = {(0, 0), (0, 1), (0, 3), (1, 0), (1, 1), (2, 2), (3, 0), (3, 3)}. Is R reflexive? symmetric? transitive?
For real numbers x and y, define xRy if and only if x – y + `sqrt(2)` is an irrational number. Then the relation R is ______.
Let Z be the set of integers and R be the relation defined in Z such that aRb if a – b is divisible by 3. Then R partitions the set Z into ______ pairwise disjoint subsets
The following defines a relation on N:
x + y = 10, x, y ∈ N
Determine which of the above relations are reflexive, symmetric and transitive.
The following defines a relation on N:
x + 4y = 10 x, y ∈ N.
Determine which of the above relations are reflexive, symmetric and transitive.
Let A = {1, 2, 3, ... 9} and R be the relation in A × A defined by (a, b) R(c, d) if a + d = b + c for (a, b), (c, d) in A × A. Prove that R is an equivalence relation and also obtain the equivalent class [(2, 5)]
Let T be the set of all triangles in the Euclidean plane, and let a relation R on T be defined as aRb if a is congruent to b ∀ a, b ∈ T. Then R is ______.
Let the relation R be defined in N by aRb if 2a + 3b = 30. Then R = ______.
Let R = {(3, 1), (1, 3), (3, 3)} be a relation defined on the set A = {1, 2, 3}. Then R is symmetric, transitive but not reflexive.
If f(x) = `1 - 1/"x", "then f"("f"(1/"x"))` ____________.
Let us define a relation R in R as aRb if a ≥ b. Then R is ____________.
Total number of equivalence relations defined in the set S = {a, b, c} is ____________.
Given triangles with sides T1: 3, 4, 5; T2: 5, 12, 13; T3: 6, 8, 10; T4: 4, 7, 9 and a relation R inset of triangles defined as R = `{(Delta_1, Delta_2) : Delta_1 "is similar to" Delta_2}`. Which triangles belong to the same equivalence class?
Which one of the following relations on the set of real numbers R is an equivalence relation?