Advertisements
Advertisements
Question
Let T be the set of all triangles in the Euclidean plane, and let a relation R on T be defined as aRb if a is congruent to b ∀ a, b ∈ T. Then R is ______.
Options
Reflexive but not transitive
Transitive but not symmetric
Equivalence
None of these
Solution
Let T be the set of all triangles in the Euclidean plane, and let a relation R on T be defined as aRb if a is congruent to b ∀ a, b ∈ T. Then R is equivalence.
Explanation:
Given aRb, if a is congruent to b, ∀ a, b ∈ T.
Then, we have aRa ⇒ a is congruent to a; which is always true.
So, R is reflexive.
Let aRb ⇒ a ~ b
b ~ a
bRa
So, R is symmetric.
Let aRb and bRc
a ~ b and b ~ c
a ~ c
aRc
So, R is transitive.
Therefore, R is equivalence relation.
APPEARS IN
RELATED QUESTIONS
determination of whether the following relations are reflexive, symmetric, and transitive:
Relation R in the set A = {1, 2, 3...13, 14} defined as R = {(x,y):3x - y = 0}
determination of whether the following relations are reflexive, symmetric, and transitive:
Relation R in the set N of natural numbers defined as
R = {(x, y): y = x + 5 and x < 4}
Show that the relation R in R defined as R = {(a, b): a ≤ b}, is reflexive and transitive but not symmetric.
Show that the relation R in the set A = {1, 2, 3, 4, 5} given by R = {(a, b) : |a - b| is even}, is an equivalence relation. Show that all the elements of {1, 3, 5} are related to each other and all the elements of {2, 4} are related to each other. But no element of {1, 3, 5} is related to any element of {2, 4}.
Given an example of a relation. Which is Reflexive and transitive but not symmetric.
If A = {1, 2, 3, 4} define relations on A which have properties of being reflexive, transitive but not symmetric ?
Let R be a relation defined on the set of natural numbers N as
R = {(x, y) : x, y ∈ N, 2x + y = 41}
Find the domain and range of R. Also, verify whether R is (i) reflexive, (ii) symmetric (iii) transitive.
An integer m is said to be related to another integer n if m is a multiple of n. Check if the relation is symmetric, reflexive and transitive.
Give an example of a relation which is transitive but neither reflexive nor symmetric?
Let R be the relation defined on the set A = {1, 2, 3, 4, 5, 6, 7} by R = {(a, b) : both a and b are either odd or even}. Show that R is an equivalence relation. Further, show that all the elements of the subset {1, 3, 5, 7} are related to each other and all the elements of the subset {2, 4, 6} are related to each other, but no element of the subset {1, 3, 5, 7} is related to any element of the subset {2, 4, 6}.
If R = {(x, y) : x + 2y = 8} is a relation on N by, then write the range of R.
Let the relation R be defined on N by aRb iff 2a + 3b = 30. Then write R as a set of ordered pairs
Let R be the relation on the set A = {1, 2, 3, 4} given by R = {(1, 2), (2, 2), (1, 1), (4, 4), (1, 3), (3, 3), (3, 2)}. Then, _____________________ .
Let A = {1, 2, 3}. Then, the number of equivalence relations containing (1, 2) is ______.
Mark the correct alternative in the following question:
Let A = {1, 2, 3} and consider the relation R = {(1, 1), (2, 2), (3, 3), (1, 2), (2, 3), (1, 3)}. Then, R is _______________ .
Mark the correct alternative in the following question:
Let L denote the set of all straight lines in a plane. Let a relation R be defined by lRm if l is perpendicular to m for all l, m ∈ L. Then, R is ______________ .
Show that the relation R on the set Z of all integers, given by R = {(a,b) : 2 divides (a-b)} is an equivalence relation.
Let A = {1, 2, 3, 4}, B = {4, 5, 6}, C = {5, 6}. Find A × (B ∪ C).
Let A = {1, 2, 3, 4}, B = {4, 5, 6}, C = {5, 6}. Find (A × B) ∪ (A × C).
Let R be a relation on the set N of natural numbers defined by nRm if n divides m. Then R is ______.
If A = {1, 2, 3, 4 }, define relations on A which have properties of being:
symmetric but neither reflexive nor transitive
Given A = {2, 3, 4}, B = {2, 5, 6, 7}. Construct an example of the following:
an injective mapping from A to B
The following defines a relation on N:
x + 4y = 10 x, y ∈ N.
Determine which of the above relations are reflexive, symmetric and transitive.
Let T be the set of all triangles in the Euclidean plane, and let a relation R on T be defined as aRb if a is congruent to b ∀ a, b ∈ T. Then R is ____________.
Let us define a relation R in R as aRb if a ≥ b. Then R is ____________.
The relation R is defined on the set of natural numbers as {(a, b) : a = 2b}. Then, R-1 is given by ____________.
Given set A = {a, b, c}. An identity relation in set A is ____________.
A relation 'R' in a set 'A' is called a universal relation, if each element of' A' is related to :-
A relation 'R' in a set 'A' is called reflexive, if
Let R = {(a, b): a = a2} for all, a, b ∈ N, then R salifies.