Advertisements
Advertisements
Question
An integer m is said to be related to another integer n if m is a multiple of n. Check if the relation is symmetric, reflexive and transitive.
Solution
R={ (m, n) : m, n ∈ Z, m=kn, where k ∈ N}
Reflexivity :
Let m be an arbitrary elementof R.Then,
m = km is true for k=1
⇒ (m, m) ∈ R
Thus, R is reflexive.
Symmetry: Let (m, n) ∈ R
⇒ m =kn for some k ∈ N
→ `n =1 /km`
⇒ (n, m) ∉ R
Thus, R is not symmetric.
Transitivity : Let (m, n) and (n, o) ∈ R
⇒ m=kn and n=lo for some k, l ∈ N
⇒ m=(kl) o
Here, kl ∈ R
⇒ (m, o) ∈ R
Thus, R is transitive.
APPEARS IN
RELATED QUESTIONS
Show that the relation R defined in the set A of all polygons as R = {(P1, P2): P1 and P2have same number of sides}, is an equivalence relation. What is the set of all elements in A related to the right angle triangle T with sides 3, 4 and 5?
Let R be the relation in the set {1, 2, 3, 4} given by R = {(1, 2), (2, 2), (1, 1), (4, 4), (1, 3), (3, 3), (3, 2)}. Choose the correct answer.
Let A = {1, 2, 3}. Then number of relations containing (1, 2) and (1, 3) which are reflexive and symmetric but not transitive is
(A) 1 (B) 2 (C) 3 (D) 4
Test whether the following relation R3 is (i) reflexive (ii) symmetric and (iii) transitive:
R3 on R is defined by (a, b) ∈ R3 `⇔` a2 – 4ab + 3b2 = 0.
Show that the relation R on the set Z of integers, given by
R = {(a, b) : 2 divides a – b}, is an equivalence relation.
Let Z be the set of integers. Show that the relation
R = {(a, b) : a, b ∈ Z and a + b is even}
is an equivalence relation on Z.
Let Z be the set of all integers and Z0 be the set of all non-zero integers. Let a relation R on Z × Z0be defined as (a, b) R (c, d) ⇔ ad = bc for all (a, b), (c, d) ∈ Z × Z0,
Prove that R is an equivalence relation on Z × Z0.
If R and S are relations on a set A, then prove that R is reflexive and S is any relation ⇒ R ∪ S is reflexive ?
If R and S are transitive relations on a set A, then prove that R ∪ S may not be a transitive relation on A.
If R = {(x, y) : x + 2y = 8} is a relation on N by, then write the range of R.
Define a transitive relation ?
Let the relation R be defined on the set A = {1, 2, 3, 4, 5} by R = {(a, b) : | a2- b2 | < 8}. Write R as a set of ordered pairs.
Write the smallest equivalence relation on the set A = {1, 2, 3} ?
The relation R = {(1, 1), (2, 2), (3, 3)} on the set {1, 2, 3} is ___________________ .
S is a relation over the set R of all real numbers and it is given by (a, b) ∈ S ⇔ ab ≥ 0. Then, S is _______________ .
Mark the correct alternative in the following question:
The relation S defined on the set R of all real number by the rule aSb if a b is _______________ .
Mark the correct alternative in the following question:
The maximum number of equivalence relations on the set A = {1, 2, 3} is _______________ .
Mark the correct alternative in the following question:
Let L denote the set of all straight lines in a plane. Let a relation R be defined by lRm if l is perpendicular to m for all l, m ∈ L. Then, R is ______________ .
If A = {a, b, c}, B = (x , y} find A × B.
If A = {a, b, c}, B = (x , y} find B × B.
Let A = {1, 2, 3, 4}, B = {4, 5, 6}, C = {5, 6} Find (A × B) ∩ (A × C).
Let A = {6, 8} and B = {1, 3, 5}.
Let R = {(a, b)/a∈ A, b∈ B, a – b is an even number}. Show that R is an empty relation from A to B.
Consider the set A = {1, 2, 3} and the relation R = {(1, 2), (1, 3)}. R is a transitive relation.
Give an example of a map which is not one-one but onto
Let A = {1, 2, 3, ... 9} and R be the relation in A × A defined by (a, b) R(c, d) if a + d = b + c for (a, b), (c, d) in A × A. Prove that R is an equivalence relation and also obtain the equivalent class [(2, 5)]
Consider the non-empty set consisting of children in a family and a relation R defined as aRb if a is brother of b. Then R is ______.
If a relation R on the set {1, 2, 3} be defined by R = {(1, 2)}, then R is ______.
Which of the following is not an equivalence relation on I, the set of integers: x, y
If A is a finite set containing n distinct elements, then the number of relations on A is equal to ____________.
Let `"f"("x") = ("x" - 1)/("x" + 1),` then f(f(x)) is ____________.
Sherlin and Danju are playing Ludo at home during Covid-19. While rolling the dice, Sherlin’s sister Raji observed and noted the possible outcomes of the throw every time belongs to set {1,2,3,4,5,6}. Let A be the set of players while B be the set of all possible outcomes.
A = {S, D}, B = {1,2,3,4,5,6}
- Let R ∶ B → B be defined by R = {(x, y): y is divisible by x} is ____________.
Students of Grade 9, planned to plant saplings along straight lines, parallel to each other to one side of the playground ensuring that they had enough play area. Let us assume that they planted one of the rows of the saplings along the line y = x − 4. Let L be the set of all lines which are parallel on the ground and R be a relation on L.
Answer the following using the above information.
- Let relation R be defined by R = {(L1, L2): L1║L2 where L1, L2 ∈ L} then R is ____________ relation.
Find: `int (x + 1)/((x^2 + 1)x) dx`
If A is a finite set consisting of n elements, then the number of reflexive relations on A is
Which one of the following relations on the set of real numbers R is an equivalence relation?
Let R = {(a, b): a = a2} for all, a, b ∈ N, then R salifies.
Let R = {(x, y) : x, y ∈ N and x2 – 4xy + 3y2 = 0}, where N is the set of all natural numbers. Then the relation R is ______.
Statement 1: The intersection of two equivalence relations is always an equivalence relation.
Statement 2: The Union of two equivalence relations is always an equivalence relation.
Which one of the following is correct?