English

Show that the Relation R Defined in the Set a of All Polygons as R = {(P1, P2): P1 and P2 Have Same Number of Sides}, is an Equivalence Relation. What is the Set of All Elements in a Related to the Right Angle Triangle T with Sides 3, 4 and 5? - Mathematics

Advertisements
Advertisements

Question

Show that the relation R defined in the set A of all polygons as R = {(P1P2): P1 and P2have same number of sides}, is an equivalence relation. What is the set of all elements in A related to the right angle triangle T with sides 3, 4 and 5?

Solution

R = {(P1P2): P1 and P2 have same the number of sides}

R is reflexive since (P1P1) ∈ R as the same polygon has the same number of sides with itself.

Let (P1P2) ∈ R.

⇒ P1 and P have the same number of sides.

⇒ P2 and P1 have the same number of sides.

⇒ (P2P1) ∈ R

∴R is symmetric.

Now,

Let (P1P2), (P2P3) ∈ R.

⇒ P1 and P2 have the same number of sides. Also, P2 and P3 have the same number of sides.

⇒ P1 and P3 have the same number of sides.

⇒ (P1P3) ∈ R

∴R is transitive.

Hence, R is an equivalence relation.

The elements in A related to the right-angled triangle (T) with sides 3, 4, and 5 are those polygons which have 3 sides (since T is a polygon with 3 sides).

Hence, the set of all elements in A related to triangle T is the set of all triangles.

shaalaa.com
  Is there an error in this question or solution?
Chapter 1: Relations and Functions - Exercise 1.1 [Page 6]

APPEARS IN

NCERT Mathematics [English] Class 12
Chapter 1 Relations and Functions
Exercise 1.1 | Q 13 | Page 6

RELATED QUESTIONS

If R=[(x, y) : x+2y=8] is a relation on N, write the range of R.


The binary operation *: R x R → R is defined as a *b = 2a + b Find (2 * 3)*4


Let A be the set of all human beings in a town at a particular time. Determine whether of the following relation is reflexive, symmetric and transitive :

R = {(x, y) : x and y live in the same locality}


Prove that every identity relation on a set is reflexive, but the converse is not necessarily true.


Is it true that every relation which is symmetric and transitive is also reflexive? Give reasons.


Given the relation R = {(1, 2), (2, 3)} on the set A = {1, 2, 3}, add a minimum number of ordered pairs so that the enlarged relation is symmeteric, transitive and reflexive.


Defines a relation on N:

x + 4y = 10, x, y ∈ N

Determine the above relation is reflexive, symmetric and transitive.


Show that the relation R on the set Z of integers, given by
R = {(a, b) : 2 divides a – b},  is an equivalence relation.


Show that the relation R on the set A = {x ∈ Z ; 0 ≤ x ≤ 12}, given by R = {(a, b) : a = b}, is an equivalence relation. Find the set of all elements related to 1.


If A = {2, 3, 4}, B = {1, 3, 7} and R = {(x, y) : x ∈ A, y ∈ B and x < y} is a relation from A to B, then write R−1.


Let A = {2, 3, 4, 5} and B = {1, 3, 4}. If R is the relation from A to B given by a R b if "a is a divisor of b". Write R as a set of ordered pairs.


Write the smallest equivalence relation on the set A = {1, 2, 3} ?


The relation 'R' in N × N such that
(a, b) R (c, d) ⇔ a + d = b + c is ______________ .


S is a relation over the set R of all real numbers and it is given by (a, b) ∈ S ⇔ ab ≥ 0. Then, S is _______________ .


Mark the correct alternative in the following question:

The maximum number of equivalence relations on the set A = {1, 2, 3} is _______________ .


If A = {a, b, c}, B = (x , y} find B × A.


If A = {a, b, c}, B = (x , y} find A × A.


R = {(a, b) / b = a + 1, a ∈ Z, 0 < a < 5}. Find the Range of R.


Let L denote the set of all straight lines in a plane. Let a relation R be defined by lRm if and only if l is perpendicular to m ∀ l, m ∈ L. Then R is ______.


Let R be relation defined on the set of natural number N as follows:
R = {(x, y): x ∈N, y ∈N, 2x + y = 41}. Find the domain and range of the relation R. Also verify whether R is reflexive, symmetric and transitive


Given A = {2, 3, 4}, B = {2, 5, 6, 7}. Construct an example of the following:
a mapping from A to B which is not injective


Given A = {2, 3, 4}, B = {2, 5, 6, 7}. Construct an example of the following:
a mapping from B to A


Give an example of a map which is not one-one but onto


Let A = {1, 2, 3, ... 9} and R be the relation in A × A defined by (a, b) R(c, d) if a + d = b + c for (a, b), (c, d) in A × A. Prove that R is an equivalence relation and also obtain the equivalent class [(2, 5)]


The relation R on the set A = {1, 2, 3} defined as R = {{1, 1), (1, 2), (2, 1), (3, 3)} is reflexive, symmetric and transitive.


Let R be the relation on N defined as by x + 2 y = 8 The domain of R is ____________.


Which of the following is not an equivalence relation on I, the set of integers: x, y


Let A = {1, 2, 3, 4, 5, 6} Which of the following partitions of A correspond to an equivalence relation on A?


If f(x) = `1 - 1/"x", "then f"("f"(1/"x"))` ____________.


Let T be the set of all triangles in the Euclidean plane, and let a relation R on T be defined as aRb if a is congruent to b ∀ a, b ∈ T. Then R is ____________.


A relation R in set A = {1, 2, 3} is defined as R = {(1, 1), (1, 2), (2, 2), (3, 3)}. Which of the following ordered pair in R shall be removed to make it an equivalence relation in A?


Given set A = {1, 2, 3} and a relation R = {(1, 2), (2, 1)}, the relation R will be ____________.


Given set A = {a, b, c}. An identity relation in set A is ____________.


Sherlin and Danju are playing Ludo at home during Covid-19. While rolling the dice, Sherlin’s sister Raji observed and noted the possible outcomes of the throw every time belongs to set {1,2,3,4,5,6}. Let A be the set of players while B be the set of all possible outcomes.

A = {S, D}, B = {1,2,3,4,5,6}

  • Let R ∶ B → B be defined by R = {(x, y): y is divisible by x} is ____________.

The value of k for which the system of equations x + ky + 3z = 0, 4x + 3y + kz = 0, 2x + y + 2z = 0 has nontrivial solution is


The relation > (greater than) on the set of real numbers is


In a group of 52 persons, 16 drink tea but not coffee, while 33 drink tea. How many persons drink coffee but not tea?


If f(x + 2a) = f(x – 2a), then f(x) is:


Given a non-empty set X, define the relation R in P(X) as follows:

For A, B ∈ P(X), (4, B) ∈ R iff A ⊂ B. Prove that R is reflexive, transitive and not symmetric.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×