English

Show that the Relation R on the Set Z of Integers, Given by R = {(A, B) : 2 Divides a – B}, is an Equivalence Relation. - Mathematics

Advertisements
Advertisements

Question

Show that the relation R on the set Z of integers, given by
R = {(a, b) : 2 divides a – b},  is an equivalence relation.

Sum

Solution

We observe the following properties of relation R.

Reflexivity :

Let a be an arbitrary element of the set Z. Then, 

a ∈ R

⇒ a−a = 0 = 0 × 2

⇒ 2 divides a − a

⇒ ( a, a ) ∈ R for all a ∈ Z

So, R is reflexive on Z.

Symmetry:

Let (a, b)∈ R

⇒ 2 divides a−b

⇒ `(a-b)/2`=p for some p ∈ Z

 ⇒  `(b-a)/2 = - p `

Here, −p ∈ Z

⇒ 2 divides b − a

⇒ (b, a)∈ R for all a, b ∈ Z

So, R is symmetric on Z

Transitivity :

Let (a, b) and (b, c) ∈ R

⇒ 2 divides a−b and 2 divides b−c

⇒ `(a-b)/2` = p  and` (b-c)/2`= q for some p, q ∈ Z`

Adding the above two, we get

`(a-b)/2 + (b -c)/2 = p +q`

⇒ `(a -c)/2 p +q`

Here, p+ q ∈ Z

⇒2 divides a − c

⇒ (a, c)∈ R for all a, c ∈ Z

So, R is transitive on Z.

Hence, R is an equivalence relation on Z.

shaalaa.com
  Is there an error in this question or solution?
Chapter 1: Relations - Exercise 1.2 [Page 26]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 1 Relations
Exercise 1.2 | Q 2 | Page 26

RELATED QUESTIONS

determination of whether the following relations are reflexive, symmetric, and transitive:

Relation R in the set  A  = {1, 2, 3...13, 14} defined as R = {(x,y):3x - y = 0}


Show that the relation R in the set A = {1, 2, 3, 4, 5} given by R = {(a, b) : |a - b| is even}, is an equivalence relation. Show that all the elements of {1, 3, 5} are related to each other and all the elements of {2, 4} are related to each other. But no element of {1, 3, 5} is related to any element of {2, 4}.


Given an example of a relation. Which is Reflexive and transitive but not symmetric.


Show that the relation R in the set A of points in a plane given by R = {(P, Q): distance of the point P from the origin is same as the distance of the point Q from the origin}, is an equivalence relation. Further, show that the set of all points related to a point P ≠ (0, 0) is the circle passing through P with origin as centre.


The binary operation *: R x R → R is defined as a *b = 2a + b Find (2 * 3)*4


Give an example of a relation which is reflexive and symmetric but not transitive ?


Defines a relation on :

x + y = 10, xy∈ N

Determine the above relation is reflexive, symmetric and transitive.


Defines a relation on N:

x + 4y = 10, x, y ∈ N

Determine the above relation is reflexive, symmetric and transitive.


Show that the relation R defined by R = {(a, b) : a – b is divisible by 3; a, b ∈ Z} is an equivalence relation.


Let Z be the set of integers. Show that the relation
 R = {(a, b) : a, b ∈ Z and a + b is even}
is an equivalence relation on Z.


Let R be a relation on the set A of ordered pair of integers defined by (x, y) R (u, v) if xv = yu. Show that R is an equivalence relation.


Let L be the set of all lines in XY-plane and R be the relation in L defined as R = {L1, L2) : L1 is parallel to L2}. Show that R is an equivalence relation. Find the set of all lines related to the line y= 2x + 4.


If R and S are relations on a set A, then prove that R is reflexive and S is any relation ⇒ R ∪ S is reflexive ?


If A = {2, 3, 4}, B = {1, 3, 7} and R = {(x, y) : x ∈ A, y ∈ B and x < y} is a relation from A to B, then write R−1.


Define a reflexive relation ?


State the reason for the relation R on the set {1, 2, 3} given by R = {(1, 2), (2, 1)} to be transitive ?


Let A = {0, 1, 2, 3} and R be a relation on A defined as
R = {(0, 0), (0, 1), (0, 3), (1, 0), (1, 1), (2, 2), (3, 0), (3, 3)}
Is R reflexive? symmetric? transitive?


Let the relation R be defined on N by aRb iff 2a + 3b = 30. Then write R as a set of ordered pairs


If A = {a, b, c}, then the relation R = {(b, c)} on A is _______________ .


The relation 'R' in N × N such that
(a, b) R (c, d) ⇔ a + d = b + c is ______________ .


A relation R is defined from {2, 3, 4, 5} to {3, 6, 7, 10} by : x R y ⇔ x is relatively prime to y. Then, domain of R is ______________ .


Let R be the relation on the set A = {1, 2, 3, 4} given by R = {(1, 2), (2, 2), (1, 1), (4, 4), (1, 3), (3, 3), (3, 2)}. Then, _____________________ .


Mark the correct alternative in the following question:

The relation S defined on the set R of all real number by the rule aSb if a  b is _______________ .


Show that the relation R on the set Z of all integers, given by R = {(a,b) : 2 divides (a-b)} is an equivalence relation.


Let A = {1, 2, 3, 4}, B = {4, 5, 6}, C = {5, 6}. Find A × (B ∩ C).


For real numbers x and y, define xRy if and only if x – y + `sqrt(2)` is an irrational number. Then the relation R is ______.


Which of the following is not an equivalence relation on I, the set of integers: x, y


If f(x) = `1 - 1/"x", "then f"("f"(1/"x"))` ____________.


Let A = {1, 2, 3, …. n} and B = {a, b}. Then the number of surjections from A into B is ____________.


Total number of equivalence relations defined in the set S = {a, b, c} is ____________.


Given set A = {a, b, c}. An identity relation in set A is ____________.


A general election of Lok Sabha is a gigantic exercise. About 911 million people were eligible to vote and voter turnout was about 67%, the highest ever


Let I be the set of all citizens of India who were eligible to exercise their voting right in the general election held in 2019. A relation ‘R’ is defined on I as follows:

R = {(V1, V2) ∶ V1, V2 ∈ I and both use their voting right in the general election - 2019}

  • Mr. Shyam exercised his voting right in General Election-2019, then Mr. Shyam is related to which of the following?

Find: `int (x + 1)/((x^2 + 1)x) dx`


The number of surjective functions from A to B where A = {1, 2, 3, 4} and B = {a, b} is


Let R = {(a, b): a = a2} for all, a, b ∈ N, then R salifies.


Given a non-empty set X, define the relation R in P(X) as follows:

For A, B ∈ P(X), (4, B) ∈ R iff A ⊂ B. Prove that R is reflexive, transitive and not symmetric.


Let R1 and R2 be two relations defined as follows :

R1 = {(a, b) ∈ R2 : a2 + b2 ∈ Q} and

R2 = {(a, b) ∈ R2 : a2 + b2 ∉ Q}, where Q is the set of all rational numbers. Then ______


Let R = {(x, y) : x, y ∈ N and x2 – 4xy + 3y2 = 0}, where N is the set of all natural numbers. Then the relation R is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×