English

Let A = {1, 2, 3, 4}, B = {4, 5, 6}, C = {5, 6}. Find A × (B ∩ C). - Mathematics and Statistics

Advertisements
Advertisements

Question

Let A = {1, 2, 3, 4}, B = {4, 5, 6}, C = {5, 6}. Find A × (B ∩ C).

Sum

Solution

A = {1, 2, 3, 4}, B = {4, 5, 6}, C = {5, 6}
B ∩ C = {5, 6}
∴ A × (B ∩ C) = {(1, 5), (1, 6), (2, 5), (2, 6), (3, 5), (3, 6), (4, 5), (4, 6)}

shaalaa.com
  Is there an error in this question or solution?
Chapter 1: Sets and Relations - Exercise 1.2 [Page 16]

APPEARS IN

RELATED QUESTIONS

Let A be the set of all human beings in a town at a particular time. Determine whether of the following relation is reflexive, symmetric and transitive:

R = {(x, y) : x is wife of y}


Prove that every identity relation on a set is reflexive, but the converse is not necessarily true.


If R = {(x, y) : x + 2y = 8} is a relation on N by, then write the range of R.


If R is a symmetric relation on a set A, then write a relation between R and R−1.


Let R be a relation on the set N given by
R = {(a, b) : a = b − 2, b > 6}. Then,


If R is the largest equivalence relation on a set A and S is any relation on A, then _____________ .


If R is a relation on the set A = {1, 2, 3} given by R = {(1, 1), (2, 2), (3, 3)}, then R is ____________ .


If A = {1, 2, 3}, then a relation R = {(2, 3)} on A is _____________ .


Mark the correct alternative in the following question:

The relation S defined on the set R of all real number by the rule aSb if a  b is _______________ .


Show that the relation R defined by (a, b)R(c,d) ⇒ a + d = b + c   on the A x A  , where A =  {1, 2,3,...,10}  is an equivalence relation. Hence write the equivalence class [(3, 4)]; a, b, c,d ∈ A.


For the matrix A = `[(2,3),(5,7)]`, find (A + A') and verify that it is a symmetric matrix.


In the set of natural numbers N, define a relation R as follows: ∀ n, m ∈ N, nRm if on division by 5 each of the integers n and m leaves the remainder less than 5, i.e. one of the numbers 0, 1, 2, 3 and 4. Show that R is equivalence relation. Also, obtain the pairwise disjoint subsets determined by R


Let n be a fixed positive integer. Define a relation R in Z as follows: ∀ a, b ∈ Z, aRb if and only if a – b is divisible by n. Show that R is an equivalance relation


The following defines a relation on N:
x is greater than y, x, y ∈ N
Determine which of the above relations are reflexive, symmetric and transitive.


Let A = {1, 2, 3} and consider the relation R = {1, 1), (2, 2), (3, 3), (1, 2), (2, 3), (1,3)}. Then R is ______.


If A is a finite set containing n distinct elements, then the number of relations on A is equal to ____________.


Let R be the relation “is congruent to” on the set of all triangles in a plane is ____________.


Given set A = {1, 2, 3} and a relation R = {(1, 2), (2, 1)}, the relation R will be ____________.


If A = {1,2,3}, B = {4,6,9} and R is a relation from A to B defined by ‘x is smaller than y’. The range of R is ____________.


In a group of 52 persons, 16 drink tea but not coffee, while 33 drink tea. How many persons drink coffee but not tea?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×