Advertisements
Advertisements
Question
Let R be a relation on the set N given by
R = {(a, b) : a = b − 2, b > 6}. Then,
Options
(2, 4) ∈ R
(3, 8) ∈ R
(6, 8) ∈ R
(8, 7) ∈ R
Solution
(6, 8) ∈ R
Then,
a = b - 2
⇒ 6 = 8 - 2
and b = 8 > 6
Hence, (6, 8) ∈ R
APPEARS IN
RELATED QUESTIONS
Check whether the relation R defined in the set {1, 2, 3, 4, 5, 6} as R = {(a, b): b = a + 1} is reflexive, symmetric, or transitive.
If A = {1, 2, 3, 4} define relations on A which have properties of being symmetric but neither reflexive nor transitive ?
If R and S are relations on a set A, then prove that R is reflexive and S is any relation ⇒ R ∪ S is reflexive ?
If R and S are transitive relations on a set A, then prove that R ∪ S may not be a transitive relation on A.
Let R = {(x, y) : |x2 − y2| <1) be a relation on set A = {1, 2, 3, 4, 5}. Write R as a set of ordered pairs.
Define a symmetric relation ?
Define an equivalence relation ?
The relation 'R' in N × N such that
(a, b) R (c, d) ⇔ a + d = b + c is ______________ .
Let R be a relation on N defined by x + 2y = 8. The domain of R is _______________ .
If R is the largest equivalence relation on a set A and S is any relation on A, then _____________ .
If A = {a, b, c, d}, then a relation R = {(a, b), (b, a), (a, a)} on A is _____________ .
Let A = {1, 2, 3}. Then, the number of equivalence relations containing (1, 2) is ______.
S is a relation over the set R of all real numbers and it is given by (a, b) ∈ S ⇔ ab ≥ 0. Then, S is _______________ .
Mark the correct alternative in the following question:
Let L denote the set of all straight lines in a plane. Let a relation R be defined by lRm if l is perpendicular to m for all l, m ∈ L. Then, R is ______________ .
Mark the correct alternative in the following question:
Consider a non-empty set consisting of children in a family and a relation R defined as aRb if a is brother of b. Then, R is _____________ .
Mark the correct alternative in the following question:
For real numbers x and y, define xRy if `x-y+sqrt2` is an irrational number. Then the relation R is ___________ .
Write the relation in the Roster form and hence find its domain and range:
R2 = `{("a", 1/"a") "/" 0 < "a" ≤ 5, "a" ∈ "N"}`
R = {(a, b) / b = a + 1, a ∈ Z, 0 < a < 5}. Find the Range of R.
Given A = {2, 3, 4}, B = {2, 5, 6, 7}. Construct an example of the following:
a mapping from B to A
Give an example of a map which is one-one but not onto
Give an example of a map which is not one-one but onto
The following defines a relation on N:
x y is square of an integer x, y ∈ N
Determine which of the above relations are reflexive, symmetric and transitive.
The maximum number of equivalence relations on the set A = {1, 2, 3} are ______.
Let the relation R be defined in N by aRb if 2a + 3b = 30. Then R = ______.
Let A = {1, 2, 3, …. n} and B = {a, b}. Then the number of surjections from A into B is ____________.
Total number of equivalence relations defined in the set S = {a, b, c} is ____________.
A relation R in set A = {1, 2, 3} is defined as R = {(1, 1), (1, 2), (2, 2), (3, 3)}. Which of the following ordered pair in R shall be removed to make it an equivalence relation in A?
Let the relation R in the set A = {x ∈ Z : 0 ≤ x ≤ 12}, given by R = {(a, b) : |a – b| is a multiple of 4}. Then [1], the equivalence class containing 1, is:
Sherlin and Danju are playing Ludo at home during Covid-19. While rolling the dice, Sherlin’s sister Raji observed and noted the possible outcomes of the throw every time belongs to set {1,2,3,4,5,6}. Let A be the set of players while B be the set of all possible outcomes.
A = {S, D}, B = {1,2,3,4,5,6}
- Let R ∶ B → B be defined by R = {(x, y): y is divisible by x} is ____________.
Sherlin and Danju are playing Ludo at home during Covid-19. While rolling the dice, Sherlin’s sister Raji observed and noted the possible outcomes of the throw every time belongs to set {1,2,3,4,5,6}. Let A be the set of players while B be the set of all possible outcomes.
A = {S, D}, B = {1,2,3,4,5,6}
- Let R be a relation on B defined by R = {(1,2), (2,2), (1,3), (3,4), (3,1), (4,3), (5,5)}. Then R is:
Students of Grade 9, planned to plant saplings along straight lines, parallel to each other to one side of the playground ensuring that they had enough play area. Let us assume that they planted one of the rows of the saplings along the line y = x − 4. Let L be the set of all lines which are parallel on the ground and R be a relation on L.
Answer the following using the above information.
- Let R = {(L1, L2 ): L1 is parallel to L2 and L1: y = x – 4} then which of the following can be taken as L2?
The relation R = {(1,1),(2,2),(3,3)} on {1,2,3} is ____________.
There are 600 student in a school. If 400 of them can speak Telugu, 300 can speak Hindi, then the number of students who can speak both Telugu and Hindi is:
A relation 'R' in a set 'A' is called reflexive, if
Let f(x)= ax2 + bx + c be such that f(1) = 3, f(–2) = λ and f(3) = 4. If f(0) + f(1) + f(–2) + f(3) = 14, then λ is equal to ______.
Let A = {1, 2, 3, 4} and let R = {(2, 2), (3, 3), (4, 4), (1, 2)} be a relation on A. Then R is ______.