English

Check whether the relation R defined in the set {1, 2, 3, 4, 5, 6} as R = {(a, b): b = a + 1} is reflexive, symmetric, or transitive. - Mathematics

Advertisements
Advertisements

Question

Check whether the relation R defined in the set {1, 2, 3, 4, 5, 6} as R = {(a, b): b = a + 1} is reflexive, symmetric, or transitive.

Sum

Solution 1

Let A = {1, 2, 3, 4, 5, 6}.

A relation R is defined on set A as:

R = {(a, b): b = a + 1}

∴R = {(1, 2), (2, 3), (3, 4), (4, 5), (5, 6)}

We can find (a, a) ∉ R, where a ∈ A.

For instance,

(1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6) ∉ R

∴R is not reflexive.

It can be observed that (1, 2) ∈ R, but (2, 1) ∉ R.

∴R is not symmetric.

Now, (1, 2), (2, 3) ∈ R

But,

(1, 3) ∉ R

∴R is not transitive

Hence, R is neither reflexive, nor symmetric, nor transitive.

shaalaa.com

Solution 2

(i) Reflexivity:

Letabeanarbitraryelementof R.Then,

1 cannot be true for all ∈ A.

⇒ (a, a∉ R 

So, R is not reflexive on A.

(ii) Symmetric:

Let (a, b∈ R

⇒ 1

⇒ 1

⇒ − 1

Thus, (b, a∉ R

So, R is not symmetric on A.

(iii) Transitive: 

Let (1, 2) and (2, 3∈ R

⇒ (a, b) ∈ R and (b, c) ∈ R

b = a + 1 and c = b + 1

c = a+ 2

⇒ (a, c) R

So, R is not transitive on A.

Hence R is not reflexive, not symmetric and not transitive.

shaalaa.com
  Is there an error in this question or solution?
Chapter 1: Relations - Exercise 1.1 [Page 11]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 1 Relations
Exercise 1.1 | Q 6 | Page 11
NCERT Mathematics [English] Class 12
Chapter 1 Relations and Functions
Exercise 1.1 | Q 3 | Page 5

RELATED QUESTIONS

determination of whether the following relations are reflexive, symmetric, and transitive:

Relation R in the set N of natural numbers defined as

R = {(x, y): y = x + 5 and x < 4}


determination of whether the following relations are reflexive, symmetric, and transitive:

Relation R in the set A of human beings in a town at a particular time given by (c) R = {(x, y): x is exactly 7 cm taller than y}


Show that the relation R in the set of real numbers, defined as R = {(a, b): a ≤ b2} is neither reflexive nor symmetric nor transitive.


Show that each of the relation R in the set A= {x  ∈ Z : 0 ≤ x  ≤ = 12} given by R = {(a, b) : |a - b| is a multiple of 4} is an equivalence relation. Find the set of all elements related to 1 in each case.


Show that each of the relation R in the set A= {x ∈ Z : 0 ≤ x ≤ = 12} given by R = {(a,b) : a = b} is an equivalence relation. Find the set of all elements related to 1 in each case.


Let A = {1, 2, 3}. Then number of relations containing (1, 2) and (1, 3) which are reflexive and symmetric but not transitive is

(A) 1 (B) 2 (C) 3 (D) 4


Let A be the set of all human beings in a town at a particular time. Determine whether of the following relation is reflexive, symmetric and transitive:

R = {(x, y) : x is wife of y}


Let A = {1, 2, 3}, and let R1 = {(1, 1), (1, 3), (3, 1), (2, 2), (2, 1), (3, 3)}, R2 = {(2, 2), (3, 1), (1, 3)}, R3 = {(1, 3), (3, 3)}. Find whether or not each of the relations R1, R2, R3 on A is (i) reflexive (ii) symmetric (iii) transitive.


The following relation is defined on the set of real numbers.

aRb if 1 + ab > 0

Find whether relation is reflexive, symmetric or transitive.


If = {1, 2, 3, 4} define relations on A which have properties of being symmetric but neither reflexive nor transitive ?


Let A = {abc} and the relation R be defined on A as follows: R = {(aa), (bc), (ab)}. Then, write minimum number of ordered pairs to be added in R to make it reflexive and transitive.


Show that the relation R, defined in the set A of all polygons as R = {(P1, P2) : P1 and P2 have same number of sides},
is an equivalence relation. What is the set of all elements in A related to the right-angled triangle T with sides 3, 4 and 5?


Let Z be the set of all integers and Z0 be the set of all non-zero integers. Let a relation R on Z × Z0be defined as (a, b) R (c, d) ⇔ ad = bc for all (a, b), (c, d) ∈ Z × Z0,
Prove that R is an equivalence relation on Z × Z0.


Let R = {(x, y) : |x2 − y2| <1) be a relation on set A = {1, 2, 3, 4, 5}. Write R as a set of ordered pairs.


Let A = {3, 5, 7}, B = {2, 6, 10} and R be a relation from A to B defined by R = {(x, y) : x and y are relatively prime}. Then, write R and R−1.


A = {1, 2, 3, 4, 5, 6, 7, 8} and if R = {(xy) : y is one half of xxy ∈ A} is a relation on A, then write R as a set of ordered pairs.


Let the relation R be defined on N by aRb iff 2a + 3b = 30. Then write R as a set of ordered pairs


Write the smallest equivalence relation on the set A = {1, 2, 3} ?


Let R be a relation on the set N given by
R = {(a, b) : a = b − 2, b > 6}. Then,


The relation R defined on the set A = {1, 2, 3, 4, 5} by
R = {(a, b) : | a2 − b2 | < 16} is given by ______________ .


Let A = {1, 2, 3}. Then, the number of relations containing (1, 2) and (1, 3) which are reflexive and symmetric but not transitive is ______.


R is a relation from {11, 12, 13} to {8, 10, 12} defined by y = x − 3. Then, R−1 is ______________ .


If R is a relation on the set A = {1, 2, 3} given by R = {(1, 1), (2, 2), (3, 3)}, then R is ____________ .


Let R be the relation on the set A = {1, 2, 3, 4} given by R = {(1, 2), (2, 2), (1, 1), (4, 4), (1, 3), (3, 3), (3, 2)}. Then, _____________________ .


Let A = {1, 2, 3}. Then, the number of equivalence relations containing (1, 2) is ______.


Show that the relation R defined by (a, b)R(c,d) ⇒ a + d = b + c   on the A x A  , where A =  {1, 2,3,...,10}  is an equivalence relation. Hence write the equivalence class [(3, 4)]; a, b, c,d ∈ A.


If A = {a, b, c}, B = (x , y} find A × B.


If A = {a, b, c}, B = (x , y} find B × A.


If A = {a, b, c}, B = (x , y} find B × B.


R = {(a, b) / b = a + 1, a ∈ Z, 0 < a < 5}. Find the Range of R.


Let Z be the set of integers and R be the relation defined in Z such that aRb if a – b is divisible by 3. Then R partitions the set Z into ______ pairwise disjoint subsets


If A = {1, 2, 3, 4 }, define relations on A which have properties of being:
reflexive, transitive but not symmetric


If A = {1, 2, 3, 4 }, define relations on A which have properties of being: 
symmetric but neither reflexive nor transitive


If A = {1, 2, 3, 4 }, define relations on A which have properties of being: 
reflexive, symmetric and transitive


Give an example of a map which is one-one but not onto


Let A = {1, 2, 3}, then the relation R = {(1, 1), (1, 2), (2, 1)} on A is ____________.


Let A = {1, 2, 3} and consider the relation R = {(1, 1), (2, 2), (3, 3), (1, 2), (2, 3), (1, 3)}. Then R is ____________.


Total number of equivalence relations defined in the set S = {a, b, c} is ____________.


The relation R is defined on the set of natural numbers as {(a, b) : a = 2b}. Then, R-1 is given by ____________.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×