मराठी

Check whether the relation R defined in the set {1, 2, 3, 4, 5, 6} as R = {(a, b): b = a + 1} is reflexive, symmetric, or transitive. - Mathematics

Advertisements
Advertisements

प्रश्न

Check whether the relation R defined in the set {1, 2, 3, 4, 5, 6} as R = {(a, b): b = a + 1} is reflexive, symmetric, or transitive.

बेरीज

उत्तर १

Let A = {1, 2, 3, 4, 5, 6}.

A relation R is defined on set A as:

R = {(a, b): b = a + 1}

∴R = {(1, 2), (2, 3), (3, 4), (4, 5), (5, 6)}

We can find (a, a) ∉ R, where a ∈ A.

For instance,

(1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6) ∉ R

∴R is not reflexive.

It can be observed that (1, 2) ∈ R, but (2, 1) ∉ R.

∴R is not symmetric.

Now, (1, 2), (2, 3) ∈ R

But,

(1, 3) ∉ R

∴R is not transitive

Hence, R is neither reflexive, nor symmetric, nor transitive.

shaalaa.com

उत्तर २

(i) Reflexivity:

Letabeanarbitraryelementof R.Then,

1 cannot be true for all ∈ A.

⇒ (a, a∉ R 

So, R is not reflexive on A.

(ii) Symmetric:

Let (a, b∈ R

⇒ 1

⇒ 1

⇒ − 1

Thus, (b, a∉ R

So, R is not symmetric on A.

(iii) Transitive: 

Let (1, 2) and (2, 3∈ R

⇒ (a, b) ∈ R and (b, c) ∈ R

b = a + 1 and c = b + 1

c = a+ 2

⇒ (a, c) R

So, R is not transitive on A.

Hence R is not reflexive, not symmetric and not transitive.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 1: Relations - Exercise 1.1 [पृष्ठ ११]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 1 Relations
Exercise 1.1 | Q 6 | पृष्ठ ११
एनसीईआरटी Mathematics [English] Class 12
पाठ 1 Relations and Functions
Exercise 1.1 | Q 3 | पृष्ठ ५

संबंधित प्रश्‍न

determination of whether the following relations are reflexive, symmetric, and transitive:

Relation R in the set N of natural numbers defined as

R = {(x, y): y = x + 5 and x < 4}


Show that the relation R in the set A of points in a plane given by R = {(P, Q): distance of the point P from the origin is same as the distance of the point Q from the origin}, is an equivalence relation. Further, show that the set of all points related to a point P ≠ (0, 0) is the circle passing through P with origin as centre.


Given a non-empty set X, consider P (X), which is the set of all subsets of X. Define the relation R in P(X) as follows:

For subsets A, B in P(X), ARB if and only if A ⊂ B. Is R an equivalence relation on P(X)? Justify your answer.


Let A = {1, 2, 3}. Then number of relations containing (1, 2) and (1, 3) which are reflexive and symmetric but not transitive is

(A) 1 (B) 2 (C) 3 (D) 4


Let A be the set of all human beings in a town at a particular time. Determine whether of the following relation is reflexive, symmetric and transitive :

R = {(x, y) : x and y live in the same locality}


Let A be the set of all human beings in a town at a particular time. Determine whether of the following relation is reflexive, symmetric and transitive:

R = {(x, y) : x is wife of y}


Test whether the following relation R1 is  (i) reflexive (ii) symmetric and (iii) transitive :

R1 on Q0 defined by (a, b) ∈ R1 ⇔ = 1/b.


Test whether the following relation R3 is (i) reflexive (ii) symmetric and (iii) transitive:

R3 on R is defined by (a, b) ∈ R3 `⇔` a2 – 4ab + 3b2 = 0.


The following relation is defined on the set of real numbers.
aRb if a – b > 0

Find whether relation is reflexive, symmetric or transitive.


The following relation is defined on the set of real numbers.

aRb if 1 + ab > 0

Find whether relation is reflexive, symmetric or transitive.


Show that the relation '≥' on the set R of all real numbers is reflexive and transitive but not symmetric ?


Give an example of a relation which is reflexive and symmetric but not transitive ?


Let R = {(a, a3) : a is a prime number less than 5} be a relation. Find the range of R.


Let A = {0, 1, 2, 3} and R be a relation on A defined as
R = {(0, 0), (0, 1), (0, 3), (1, 0), (1, 1), (2, 2), (3, 0), (3, 3)}
Is R reflexive? symmetric? transitive?


R is a relation on the set Z of integers and it is given by
(x, y) ∈ R ⇔ | x − y | ≤ 1. Then, R is ______________ .


The relation 'R' in N × N such that
(a, b) R (c, d) ⇔ a + d = b + c is ______________ .


R is a relation from {11, 12, 13} to {8, 10, 12} defined by y = x − 3. Then, R−1 is ______________ .


 If A = {a, b, c, d}, then a relation R = {(a, b), (b, a), (a, a)} on A is _____________ .


Let A = {1, 2, 3}. Then, the number of equivalence relations containing (1, 2) is ______.


Let A = {1, 2, 3, 4}, B = {4, 5, 6}, C = {5, 6} Find (A × B) ∩ (A × C).


Write the relation in the Roster form and hence find its domain and range :
R1 = {(a, a2) / a is prime number less than 15}


Write the relation in the Roster form and hence find its domain and range:

R2 = `{("a", 1/"a")  "/"  0 < "a" ≤ 5, "a" ∈ "N"}`


Let R be relation defined on the set of natural number N as follows:
R = {(x, y): x ∈N, y ∈N, 2x + y = 41}. Find the domain and range of the relation R. Also verify whether R is reflexive, symmetric and transitive


Given A = {2, 3, 4}, B = {2, 5, 6, 7}. Construct an example of the following:
an injective mapping from A to B


The following defines a relation on N:
x + 4y = 10 x, y ∈ N.
Determine which of the above relations are reflexive, symmetric and transitive.


Consider the non-empty set consisting of children in a family and a relation R defined as aRb if a is brother of b. Then R is ______.


The maximum number of equivalence relations on the set A = {1, 2, 3} are ______.


Let A = {1, 2, 3}, then the domain of the relation R = {(1, 1), (2, 3), (2, 1)} defined on A is ____________.


Let A = {1, 2, 3, 4, 5, 6} Which of the following partitions of A correspond to an equivalence relation on A?


Given set A = {a, b, c}. An identity relation in set A is ____________.


The relation R = {(1,1),(2,2),(3,3)} on {1,2,3} is ____________.


The number of surjective functions from A to B where A = {1, 2, 3, 4} and B = {a, b} is


Let a set A = A1 ∪ A2 ∪ ... ∪ Ak, where Ai ∩ Aj = Φ for i ≠ j, 1 ≤ i, j ≤ k. Define the relation R from A to A by R = {(x, y): y ∈ Ai if and only if x ∈ Ai, 1 ≤ i ≤ k}. Then, R is ______.


Let R = {(x, y) : x, y ∈ N and x2 – 4xy + 3y2 = 0}, where N is the set of all natural numbers. Then the relation R is ______.


lf A = {x ∈ z+ : x < 10 and x is a multiple of 3 or 4}, where z+ is the set of positive integers, then the total number of symmetric relations on A is ______.


Let A = {3, 5}. Then number of reflexive relations on A is ______.


Let N be the set of all natural numbers and R be a relation on N × N defined by (a, b) R (c, d) `⇔` ad = bc for all (a, b), (c, d) ∈ N × N. Show that R is an equivalence relation on N × N. Also, find the equivalence class of (2, 6), i.e., [(2, 6)].


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×