Advertisements
Advertisements
प्रश्न
Let A = {1, 2, 3}. Then number of relations containing (1, 2) and (1, 3) which are reflexive and symmetric but not transitive is
(A) 1 (B) 2 (C) 3 (D) 4
उत्तर
The given set is A = {1, 2, 3}.
The smallest relation containing (1, 2) and (1, 3) which is reflexive and symmetric, but not transitive is given by:
R = {(1, 1), (2, 2), (3, 3), (1, 2), (1, 3), (2, 1), (3, 1)}
This is because relation R is reflexive as (1, 1), (2, 2), (3, 3) ∈ R.
Relation R is symmetric since (1, 2), (2, 1) ∈R and (1, 3), (3, 1) ∈R.
But relation R is not transitive as (3, 1), (1, 2) ∈ R, but (3, 2) ∉ R.
Now, if we add any two pairs (3, 2) and (2, 3) (or both) to relation R, then relation R will become transitive.
Hence, the total number of desired relations is one.
The correct answer is A.
APPEARS IN
संबंधित प्रश्न
Let N denote the set of all natural numbers and R be the relation on N × N defined by (a, b) R (c, d) if ad (b + c) = bc (a + d). Show that R is an equivalence relation.
If R=[(x, y) : x+2y=8] is a relation on N, write the range of R.
determination of whether the following relations are reflexive, symmetric, and transitive:
Relation R in the set A of human beings in a town at a particular time given by (c) R = {(x, y): x is exactly 7 cm taller than y}
Show that each of the relation R in the set A= {x ∈ Z : 0 ≤ x ≤ = 12} given by R = {(a, b) : |a - b| is a multiple of 4} is an equivalence relation. Find the set of all elements related to 1 in each case.
Given an example of a relation. Which is Symmetric but neither reflexive nor transitive.
Given an example of a relation. Which is Symmetric and transitive but not reflexive.
Let A = {1, 2, 3}. Then number of equivalence relations containing (1, 2) is
(A) 1
(B) 2
(C) 3
(D) 4
Three relations R1, R2 and R3 are defined on a set A = {a, b, c} as follows:
R1 = {(a, a), (a, b), (a, c), (b, b), (b, c), (c, a), (c, b), (c, c)}
R2 = {(a, a)}
R3 = {(b, c)}
R4 = {(a, b), (b, c), (c, a)}.
Find whether or not each of the relations R1, R2, R3, R4 on A is (i) reflexive (ii) symmetric and (iii) transitive.
If A = {1, 2, 3, 4} define relations on A which have properties of being reflexive, transitive but not symmetric ?
An integer m is said to be related to another integer n if m is a multiple of n. Check if the relation is symmetric, reflexive and transitive.
Let Z be the set of integers. Show that the relation
R = {(a, b) : a, b ∈ Z and a + b is even}
is an equivalence relation on Z.
Let R be a relation on the set A of ordered pair of integers defined by (x, y) R (u, v) if xv = yu. Show that R is an equivalence relation.
Define an equivalence relation ?
If A = {3, 5, 7} and B = {2, 4, 9} and R is a relation given by "is less than", write R as a set ordered pairs.
Let A = {0, 1, 2, 3} and R be a relation on A defined as
R = {(0, 0), (0, 1), (0, 3), (1, 0), (1, 1), (2, 2), (3, 0), (3, 3)}
Is R reflexive? symmetric? transitive?
Let the relation R be defined on N by aRb iff 2a + 3b = 30. Then write R as a set of ordered pairs
R is a relation on the set Z of integers and it is given by
(x, y) ∈ R ⇔ | x − y | ≤ 1. Then, R is ______________ .
Let R be the relation over the set of all straight lines in a plane such that l1 R l2 ⇔ l 1⊥ l2. Then, R is _____________ .
If R is the largest equivalence relation on a set A and S is any relation on A, then _____________ .
If A = {1, 2, 3}, then a relation R = {(2, 3)} on A is _____________ .
Let R be the relation on the set A = {1, 2, 3, 4} given by R = {(1, 2), (2, 2), (1, 1), (4, 4), (1, 3), (3, 3), (3, 2)}. Then, _____________________ .
S is a relation over the set R of all real numbers and it is given by (a, b) ∈ S ⇔ ab ≥ 0. Then, S is _______________ .
In the set Z of all integers, which of the following relation R is not an equivalence relation ?
If A = {1, 2, 3, 4 }, define relations on A which have properties of being:
symmetric but neither reflexive nor transitive
Give an example of a map which is one-one but not onto
Give an example of a map which is not one-one but onto
The following defines a relation on N:
x y is square of an integer x, y ∈ N
Determine which of the above relations are reflexive, symmetric and transitive.
Let T be the set of all triangles in the Euclidean plane, and let a relation R on T be defined as aRb if a is congruent to b ∀ a, b ∈ T. Then R is ______.
Let the relation R be defined on the set A = {1, 2, 3, 4, 5} by R = {(a, b) : |a2 – b2| < 8. Then R is given by ______.
Let A = {1, 2, 3} and R = {(1, 2), (2, 3), (1, 3)} be a relation on A. Then, R is ____________.
Let T be the set of all triangles in the Euclidean plane, and let a relation R on T be defined as aRb if a is congruent to b ∀ a, b ∈ T. Then R is ____________.
Let S = {1, 2, 3, 4, 5} and let A = S x S. Define the relation R on A as follows:
(a, b) R (c, d) iff ad = cb. Then, R is ____________.
Let R be the relation “is congruent to” on the set of all triangles in a plane is ____________.
Let A = {x : -1 ≤ x ≤ 1} and f : A → A is a function defined by f(x) = x |x| then f is ____________.
Sherlin and Danju are playing Ludo at home during Covid-19. While rolling the dice, Sherlin’s sister Raji observed and noted the possible outcomes of the throw every time belongs to set {1,2,3,4,5,6}. Let A be the set of players while B be the set of all possible outcomes.
A = {S, D}, B = {1,2,3,4,5,6}
- Raji wants to know the number of relations possible from A to B. How many numbers of relations are possible?
An organization conducted a bike race under 2 different categories-boys and girls. Totally there were 250 participants. Among all of them finally, three from Category 1 and two from Category 2 were selected for the final race. Ravi forms two sets B and G with these participants for his college project. Let B = {b1,b2,b3} G={g1,g2} where B represents the set of boys selected and G the set of girls who were selected for the final race.
Ravi decides to explore these sets for various types of relations and functions.
- Ravi wishes to form all the relations possible from B to G. How many such relations are possible?
Find: `int (x + 1)/((x^2 + 1)x) dx`
In a group of 52 persons, 16 drink tea but not coffee, while 33 drink tea. How many persons drink coffee but not tea?