मराठी

S Is a Relation Over the Set R of All Real Numbers and It is Given by (A, B) ∈ S ⇔ Ab ≥ 0. Then, S is _______________ . - Mathematics

Advertisements
Advertisements

प्रश्न

S is a relation over the set R of all real numbers and it is given by (a, b) ∈ S ⇔ ab ≥ 0. Then, S is _______________ .

पर्याय

  • symmetric and transitive only

  • reflexive and symmetric only

  • antisymmetric relation

  • an equivalence relation

MCQ

उत्तर

an equivalence relation

Reflexivity: Let a ∈ R

Then,

aa = a2 > 0

⇒ (a, a) ∈ R ∀ a ∈ R

So, S is reflexive on R.

Symmetry: Let (a, b) ∈ S

Then,

(a, b) ∈ S

⇒ ab ≥ 0

⇒ ba ≥ 0

⇒ (b, a) ∈ S ∀ a, b ∈ R

So, S is symmetric on R.

Transitive:

If (a, b), (b, c) ∈ S

⇒ ab ≥ 0 and bc ≥ 0

⇒ ab x bc ≥ 0

⇒ ac ≥ 0                      [∵ b2 ≥ 0]

⇒ (a, c) ∈ S for all a, b, c ∈ set R

Hence, S is an equivalence relation on R

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 1: Relations - Exercise 1.4 [पृष्ठ ३३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 1 Relations
Exercise 1.4 | Q 25 | पृष्ठ ३३

संबंधित प्रश्‍न

Let N denote the set of all natural numbers and R be the relation on N × N defined by (a, b) R (c, d) if ad (b + c) = bc (a + d). Show that R is an equivalence relation.


Check whether the relation R defined in the set {1, 2, 3, 4, 5, 6} as R = {(a, b): b = a + 1} is reflexive, symmetric, or transitive.


Show that each of the relation R in the set A= {x  ∈ Z : 0 ≤ x  ≤ = 12} given by R = {(a, b) : |a - b| is a multiple of 4} is an equivalence relation. Find the set of all elements related to 1 in each case.


Given an example of a relation. Which is Transitive but neither reflexive nor symmetric.


Show that the relation R in the set A of points in a plane given by R = {(P, Q): distance of the point P from the origin is same as the distance of the point Q from the origin}, is an equivalence relation. Further, show that the set of all points related to a point P ≠ (0, 0) is the circle passing through P with origin as centre.


The following relation is defined on the set of real numbers.
aRb if a – b > 0

Find whether relation is reflexive, symmetric or transitive.


Show that the relation '≥' on the set R of all real numbers is reflexive and transitive but not symmetric ?


Give an example of a relation which is symmetric but neither reflexive nor transitive?


Defines a relation on N :

xy is square of an integer, x, y ∈ N

Determine the above relation is reflexive, symmetric and transitive.


Let n be a fixed positive integer. Define a relation R on Z as follows:
(a, b) ∈ R ⇔ a − b is divisible by n.
Show that R is an equivalence relation on Z.


Let R be a relation on the set A of ordered pair of integers defined by (x, y) R (u, v) if xv = yu. Show that R is an equivalence relation.


Let S be a relation on the set R of all real numbers defined by
S = {(a, b) ∈ R × R : a2 + b2 = 1}
Prove that S is not an equivalence relation on R.


If R = {(x, y) : x + 2y = 8} is a relation on N by, then write the range of R.


Let the relation R be defined on the set A = {1, 2, 3, 4, 5} by R = {(ab) : | a2b| < 8}. Write as a set of ordered pairs.


If A = {1, 2, 3}, B = {1, 4, 6, 9} and R is a relation from A to B defined by 'x is greater than y'. The range of R is ______________ .


A relation ϕ from C to R is defined by x ϕ y ⇔ | x | = y. Which one is correct?


If R is a relation on the set A = {1, 2, 3} given by R = {(1, 1), (2, 2), (3, 3)}, then R is ____________ .


Mark the correct alternative in the following question:

The maximum number of equivalence relations on the set A = {1, 2, 3} is _______________ .


Show that the relation R on R defined as R = {(a, b): a ≤ b}, is reflexive, and transitive but not symmetric.


If A = {a, b, c}, B = (x , y} find A × A.


Write the relation in the Roster form and hence find its domain and range :
R1 = {(a, a2) / a is prime number less than 15}


Consider the set A = {1, 2, 3} and the relation R = {(1, 2), (1, 3)}. R is a transitive relation.


Given A = {2, 3, 4}, B = {2, 5, 6, 7}. Construct an example of the following:
an injective mapping from A to B


Consider the non-empty set consisting of children in a family and a relation R defined as aRb if a is brother of b. Then R is ______.


Let A = {1, 2, 3} and consider the relation R = {1, 1), (2, 2), (3, 3), (1, 2), (2, 3), (1,3)}. Then R is ______.


Let R = {(3, 1), (1, 3), (3, 3)} be a relation defined on the set A = {1, 2, 3}. Then R is symmetric, transitive but not reflexive.


The relation R on the set A = {1, 2, 3} defined as R = {{1, 1), (1, 2), (2, 1), (3, 3)} is reflexive, symmetric and transitive.


Let A = {1, 2, 3}, then the relation R = {(1, 1), (1, 2), (2, 1)} on A is ____________.


Let us define a relation R in R as aRb if a ≥ b. Then R is ____________.


Let A = {1, 2, 3, …. n} and B = {a, b}. Then the number of surjections from A into B is ____________.


Sherlin and Danju are playing Ludo at home during Covid-19. While rolling the dice, Sherlin’s sister Raji observed and noted the possible outcomes of the throw every time belongs to set {1,2,3,4,5,6}. Let A be the set of players while B be the set of all possible outcomes.

A = {S, D}, B = {1,2,3,4,5,6}

  • Let R be a relation on B defined by R = {(1,2), (2,2), (1,3), (3,4), (3,1), (4,3), (5,5)}. Then R is:

The number of surjective functions from A to B where A = {1, 2, 3, 4} and B = {a, b} is


A relation 'R' in a set 'A' is called a universal relation, if each element of' A' is related to :-


If a relation R on the set {a, b, c} defined by R = {(b, b)}, then classify the relation.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×