Advertisements
Advertisements
प्रश्न
Let N denote the set of all natural numbers and R be the relation on N × N defined by (a, b) R (c, d) if ad (b + c) = bc (a + d). Show that R is an equivalence relation.
उत्तर
To prove a relation R is an equivalence relation, it will be sufficient to prove it as a reflexive, symmetric and transitive relation.
i) Reflexivity:
Let (a, b) be an arbitrary element of N × N.
Now,
a, b ∈ N
⇒ab(a+b)=ba(a+b)
⇒(a,b)R(a,b)
∴ (a, b)R(a, b) for all (a, b) ∈ N × N
Hence, R is reflexive.
ii) Symmetry:
Let (a, b), (c, d) be an arbitrary element of N × N such that (a, b)R(c, d).
∴ ad(b+c)=bc(a+d)
⇒cb(d+a)=da(c+b)
⇒(c,d)R(a,b)
∴ (a, b)R(c, d) ⇒ (c, d)R(a, b) for all (a, b), (c, d) ∈ N × N
Hence, R is symmetric.
iii) Transitivity:
Let (a, b), (c, d), (e, f) be an arbitrary element of N × N such that (a, b)R(c, d) and (c, d)R(e, f).
ad(b+c)=bc(a+d)
⇒adb+adc=abc+bcd
⇒cd(a−b)=ab(c−d) .....(1)
Also,cf(d+e)=de(c+f)
⇒cfd+cfe=dec+def
⇒cd(f−e)=ef(d−c) ....(2)
From (1) and (2), we have
`(a−b)/(f−e)=−(ab)/(ef)`
⇒aef−bef=−abf+aeb
⇒aef+abf=aeb+bef
⇒af(b+e)=be(a+f)
⇒(a, b)R(e, f)
∴(a, b)R(c, d) and (c, d)R(e, f) ⇒ (a, b)R(e, f) for all (a, b), (c, d), (e, f) ∈ N × N
Hence, R is transitive.
Thus, R being reflexive, symmetric and transitive, is an equivalence relation on N × N.
APPEARS IN
संबंधित प्रश्न
If R=[(x, y) : x+2y=8] is a relation on N, write the range of R.
Given an example of a relation. Which is Symmetric and transitive but not reflexive.
Show that the relation R defined in the set A of all triangles as R = {(T1, T2): T1 is similar to T2}, is equivalence relation. Consider three right angle triangles T1 with sides 3, 4, 5, T2 with sides 5, 12, 13 and T3 with sides 6, 8, and 10. Which triangles among T1, T2 and T3 are related?
Let A = {1, 2, 3}. Then number of equivalence relations containing (1, 2) is
(A) 1
(B) 2
(C) 3
(D) 4
Defines a relation on N :
x > y, x, y ∈ N
Determine the above relation is reflexive, symmetric and transitive.
Let n be a fixed positive integer. Define a relation R on Z as follows:
(a, b) ∈ R ⇔ a − b is divisible by n.
Show that R is an equivalence relation on Z.
Let Z be the set of integers. Show that the relation
R = {(a, b) : a, b ∈ Z and a + b is even}
is an equivalence relation on Z.
Write the smallest reflexive relation on set A = {1, 2, 3, 4}.
Let A = {3, 5, 7}, B = {2, 6, 10} and R be a relation from A to B defined by R = {(x, y) : x and y are relatively prime}. Then, write R and R−1.
Define a symmetric relation ?
Let R be the equivalence relation on the set Z of the integers given by R = { (a, b) : 2 divides a - b }.
Write the equivalence class [0].
R is a relation on the set Z of integers and it is given by
(x, y) ∈ R ⇔ | x − y | ≤ 1. Then, R is ______________ .
The relation 'R' in N × N such that
(a, b) R (c, d) ⇔ a + d = b + c is ______________ .
In the set Z of all integers, which of the following relation R is not an equivalence relation ?
Show that the relation R on R defined as R = {(a, b): a ≤ b}, is reflexive, and transitive but not symmetric.
Write the relation in the Roster form and hence find its domain and range:
R2 = `{("a", 1/"a") "/" 0 < "a" ≤ 5, "a" ∈ "N"}`
Consider the set A = {1, 2, 3} and R be the smallest equivalence relation on A, then R = ______
Given A = {2, 3, 4}, B = {2, 5, 6, 7}. Construct an example of the following:
an injective mapping from A to B
Every relation which is symmetric and transitive is also reflexive.
Let A = {1, 2, 3}, then the relation R = {(1, 1), (1, 2), (2, 1)} on A is ____________.
A relation R on a non – empty set A is an equivalence relation if it is ____________.
Let `"f"("x") = ("x" - 1)/("x" + 1),` then f(f(x)) is ____________.
Let A = {1, 2, 3, …. n} and B = {a, b}. Then the number of surjections from A into B is ____________.
An organization conducted a bike race under 2 different categories-boys and girls. Totally there were 250 participants. Among all of them finally, three from Category 1 and two from Category 2 were selected for the final race. Ravi forms two sets B and G with these participants for his college project. Let B = {b1,b2,b3} G={g1,g2} where B represents the set of boys selected and G the set of girls who were selected for the final race.
Ravi decides to explore these sets for various types of relations and functions.
- Ravi wishes to form all the relations possible from B to G. How many such relations are possible?
If A is a finite set consisting of n elements, then the number of reflexive relations on A is
A relation in a set 'A' is known as empty relation:-
Let A = {1, 2, 3, 4} and let R = {(2, 2), (3, 3), (4, 4), (1, 2)} be a relation on A. Then R is ______.