Advertisements
Advertisements
प्रश्न
Let N denote the set of all natural numbers and R be the relation on N × N defined by (a, b) R (c, d) if ad (b + c) = bc (a + d). Show that R is an equivalence relation.
उत्तर
To prove a relation R is an equivalence relation, it will be sufficient to prove it as a reflexive, symmetric and transitive relation.
i) Reflexivity:
Let (a, b) be an arbitrary element of N × N.
Now,
a, b ∈ N
⇒ab(a+b)=ba(a+b)
⇒(a,b)R(a,b)
∴ (a, b)R(a, b) for all (a, b) ∈ N × N
Hence, R is reflexive.
ii) Symmetry:
Let (a, b), (c, d) be an arbitrary element of N × N such that (a, b)R(c, d).
∴ ad(b+c)=bc(a+d)
⇒cb(d+a)=da(c+b)
⇒(c,d)R(a,b)
∴ (a, b)R(c, d) ⇒ (c, d)R(a, b) for all (a, b), (c, d) ∈ N × N
Hence, R is symmetric.
iii) Transitivity:
Let (a, b), (c, d), (e, f) be an arbitrary element of N × N such that (a, b)R(c, d) and (c, d)R(e, f).
ad(b+c)=bc(a+d)
⇒adb+adc=abc+bcd
⇒cd(a−b)=ab(c−d) .....(1)
Also,cf(d+e)=de(c+f)
⇒cfd+cfe=dec+def
⇒cd(f−e)=ef(d−c) ....(2)
From (1) and (2), we have
`(a−b)/(f−e)=−(ab)/(ef)`
⇒aef−bef=−abf+aeb
⇒aef+abf=aeb+bef
⇒af(b+e)=be(a+f)
⇒(a, b)R(e, f)
∴(a, b)R(c, d) and (c, d)R(e, f) ⇒ (a, b)R(e, f) for all (a, b), (c, d), (e, f) ∈ N × N
Hence, R is transitive.
Thus, R being reflexive, symmetric and transitive, is an equivalence relation on N × N.
APPEARS IN
संबंधित प्रश्न
determination of whether the following relations are reflexive, symmetric, and transitive:
Relation R in the set Z of all integers defined as
R = {(x, y): x − y is an integer}
Check whether the relation R in R defined by R = {(a, b): a ≤ b3} is reflexive, symmetric, or transitive.
Show that the relation R in the set A of points in a plane given by R = {(P, Q): distance of the point P from the origin is same as the distance of the point Q from the origin}, is an equivalence relation. Further, show that the set of all points related to a point P ≠ (0, 0) is the circle passing through P with origin as centre.
Let L be the set of all lines in XY plane and R be the relation in L defined as R = {(L1, L2): L1 is parallel to L2}. Show that R is an equivalence relation. Find the set of all lines related to the line y = 2x + 4.
Let A = {1, 2, 3}. Then number of equivalence relations containing (1, 2) is
(A) 1
(B) 2
(C) 3
(D) 4
Define a symmetric relation ?
Let R be the equivalence relation on the set Z of the integers given by R = { (a, b) : 2 divides a - b }.
Write the equivalence class [0].
A relation R is defined from {2, 3, 4, 5} to {3, 6, 7, 10} by : x R y ⇔ x is relatively prime to y. Then, domain of R is ______________ .
R is a relation from {11, 12, 13} to {8, 10, 12} defined by y = x − 3. Then, R−1 is ______________ .
If R is the largest equivalence relation on a set A and S is any relation on A, then _____________ .
S is a relation over the set R of all real numbers and it is given by (a, b) ∈ S ⇔ ab ≥ 0. Then, S is _______________ .
In the set Z of all integers, which of the following relation R is not an equivalence relation ?
Mark the correct alternative in the following question:
Let L denote the set of all straight lines in a plane. Let a relation R be defined by lRm if l is perpendicular to m for all l, m ∈ L. Then, R is ______________ .
Show that the relation R defined by (a, b)R(c,d) ⇒ a + d = b + c on the A x A , where A = {1, 2,3,...,10} is an equivalence relation. Hence write the equivalence class [(3, 4)]; a, b, c,d ∈ A.
Show that the relation S in the set A = [x ∈ Z : 0 ≤ x ≤ 12] given by S = [(a, b) : a, b ∈ Z, ∣a − b∣ is divisible by 3] is an equivalence relation.
Let A = {1, 2, 3, 4}, B = {4, 5, 6}, C = {5, 6} Find (A × B) ∩ (A × C).
Let A = {6, 8} and B = {1, 3, 5}.
Let R = {(a, b)/a∈ A, b∈ B, a – b is an even number}. Show that R is an empty relation from A to B.
Given A = {2, 3, 4}, B = {2, 5, 6, 7}. Construct an example of the following:
a mapping from B to A
The following defines a relation on N:
x + 4y = 10 x, y ∈ N.
Determine which of the above relations are reflexive, symmetric and transitive.
Let T be the set of all triangles in the Euclidean plane, and let a relation R on T be defined as aRb if a is congruent to b ∀ a, b ∈ T. Then R is ______.
Let us define a relation R in R as aRb if a ≥ b. Then R is ______.
A relation R on a non – empty set A is an equivalence relation if it is ____________.
Let A = {1, 2, 3, …. n} and B = {a, b}. Then the number of surjections from A into B is ____________.
Let R be the relation “is congruent to” on the set of all triangles in a plane is ____________.
Total number of equivalence relations defined in the set S = {a, b, c} is ____________.
A relation S in the set of real numbers is defined as `"xSy" => "x" - "y" + sqrt3` is an irrational number, then relation S is ____________.
Sherlin and Danju are playing Ludo at home during Covid-19. While rolling the dice, Sherlin’s sister Raji observed and noted the possible outcomes of the throw every time belongs to set {1,2,3,4,5,6}. Let A be the set of players while B be the set of all possible outcomes.
A = {S, D}, B = {1,2,3,4,5,6}
- Let R ∶ B → B be defined by R = {(x, y): y is divisible by x} is ____________.
Students of Grade 9, planned to plant saplings along straight lines, parallel to each other to one side of the playground ensuring that they had enough play area. Let us assume that they planted one of the rows of the saplings along the line y = x − 4. Let L be the set of all lines which are parallel on the ground and R be a relation on L.
Answer the following using the above information.
- Let relation R be defined by R = {(L1, L2): L1║L2 where L1, L2 ∈ L} then R is ____________ relation.
Let A = {3, 5}. Then number of reflexive relations on A is ______.
Statement 1: The intersection of two equivalence relations is always an equivalence relation.
Statement 2: The Union of two equivalence relations is always an equivalence relation.
Which one of the following is correct?