Advertisements
Advertisements
प्रश्न
A relation R is defined from {2, 3, 4, 5} to {3, 6, 7, 10} by : x R y ⇔ x is relatively prime to y. Then, domain of R is ______________ .
विकल्प
{2, 3, 5}
{3, 5}
{2, 3, 4}
{2, 3, 4, 5}
उत्तर
{2, 3, 4, 5}
The relation R is defined as
R = {(x, y) : x ∈ {2, 3, 4, 5}, y ∈ {3, 6, 7, 10} : x is relatively prime to y}
⇒ R= { (2, 3), (2, 7), (3, 7), (3, 10), (4, 7), (5, 3), (5, 7) }
Hence, the domain of R includes all the values of x, i.e. {2, 3, 4, 5}.
APPEARS IN
संबंधित प्रश्न
determination of whether the following relations are reflexive, symmetric, and transitive:
Relation R in the set N of natural numbers defined as
R = {(x, y): y = x + 5 and x < 4}
Given an example of a relation. Which is Transitive but neither reflexive nor symmetric.
Three relations R1, R2 and R3 are defined on a set A = {a, b, c} as follows:
R1 = {(a, a), (a, b), (a, c), (b, b), (b, c), (c, a), (c, b), (c, c)}
R2 = {(a, a)}
R3 = {(b, c)}
R4 = {(a, b), (b, c), (c, a)}.
Find whether or not each of the relations R1, R2, R3, R4 on A is (i) reflexive (ii) symmetric and (iii) transitive.
Test whether the following relation R1 is (i) reflexive (ii) symmetric and (iii) transitive :
R1 on Q0 defined by (a, b) ∈ R1 ⇔ a = 1/b.
Test whether the following relation R2 is (i) reflexive (ii) symmetric and (iii) transitive:
R2 on Z defined by (a, b) ∈ R2 ⇔ |a – b| ≤ 5
Prove that every identity relation on a set is reflexive, but the converse is not necessarily true.
An integer m is said to be related to another integer n if m is a multiple of n. Check if the relation is symmetric, reflexive and transitive.
Given the relation R = {(1, 2), (2, 3)} on the set A = {1, 2, 3}, add a minimum number of ordered pairs so that the enlarged relation is symmeteric, transitive and reflexive.
Let A = {a, b, c} and the relation R be defined on A as follows: R = {(a, a), (b, c), (a, b)}. Then, write minimum number of ordered pairs to be added in R to make it reflexive and transitive.
Prove that the relation R on Z defined by
(a, b) ∈ R ⇔ a − b is divisible by 5
is an equivalence relation on Z.
If R is a symmetric relation on a set A, then write a relation between R and R−1.
If A = {2, 3, 4}, B = {1, 3, 7} and R = {(x, y) : x ∈ A, y ∈ B and x < y} is a relation from A to B, then write R−1.
Let A = {3, 5, 7}, B = {2, 6, 10} and R be a relation from A to B defined by R = {(x, y) : x and y are relatively prime}. Then, write R and R−1.
Define a reflexive relation ?
State the reason for the relation R on the set {1, 2, 3} given by R = {(1, 2), (2, 1)} to be transitive ?
Let the relation R be defined on the set A = {1, 2, 3, 4, 5} by R = {(a, b) : | a2- b2 | < 8}. Write R as a set of ordered pairs.
Let the relation R be defined on N by aRb iff 2a + 3b = 30. Then write R as a set of ordered pairs
Let R be a relation on the set N given by
R = {(a, b) : a = b − 2, b > 6}. Then,
The relation R = {(1, 1), (2, 2), (3, 3)} on the set {1, 2, 3} is ___________________ .
In the set Z of all integers, which of the following relation R is not an equivalence relation ?
Mark the correct alternative in the following question:
Let L denote the set of all straight lines in a plane. Let a relation R be defined by lRm if l is perpendicular to m for all l, m ∈ L. Then, R is ______________ .
If f (x) = `(4x + 3)/(6x - 4) , x ≠ 2/3`, show that fof (x) = x for all ` x ≠ 2/3` . Also, find the inverse of f.
For the matrix A = `[(2,3),(5,7)]`, find (A + A') and verify that it is a symmetric matrix.
If A = {a, b, c}, B = (x , y} find A × B.
If A = {a, b, c}, B = (x , y} find A × A.
Let A = {1, 2, 3, 4}, B = {4, 5, 6}, C = {5, 6} Find (A × B) ∩ (A × C).
Consider the set A = {1, 2, 3} and R be the smallest equivalence relation on A, then R = ______
Given A = {2, 3, 4}, B = {2, 5, 6, 7}. Construct an example of the following:
a mapping from A to B which is not injective
If a relation R on the set {1, 2, 3} be defined by R = {(1, 2)}, then R is ______.
If A is a finite set containing n distinct elements, then the number of relations on A is equal to ____________.
Let A = {1, 2, 3, …. n} and B = {a, b}. Then the number of surjections from A into B is ____________.
Let R be a relation on the set N of natural numbers denoted by nRm ⇔ n is a factor of m (i.e. n | m). Then, R is ____________.
The relation R is defined on the set of natural numbers as {(a, b) : a = 2b}. Then, R-1 is given by ____________.
Sherlin and Danju are playing Ludo at home during Covid-19. While rolling the dice, Sherlin’s sister Raji observed and noted the possible outcomes of the throw every time belongs to set {1,2,3,4,5,6}. Let A be the set of players while B be the set of all possible outcomes.
A = {S, D}, B = {1,2,3,4,5,6}
- Let R: B → B be defined by R = {(1,1),(1,2), (2,2), (3,3), (4,4), (5,5), (6,6)}, then R is ____________.
If A = {1,2,3}, B = {4,6,9} and R is a relation from A to B defined by ‘x is smaller than y’. The range of R is ____________.
A relation 'R' in a set 'A' is called a universal relation, if each element of' A' is related to :-
A relation 'R' in a set 'A' is called reflexive, if
Let A = {1, 2, 3, 4} and let R = {(2, 2), (3, 3), (4, 4), (1, 2)} be a relation on A. Then R is ______.