Advertisements
Advertisements
प्रश्न
If f (x) = `(4x + 3)/(6x - 4) , x ≠ 2/3`, show that fof (x) = x for all ` x ≠ 2/3` . Also, find the inverse of f.
उत्तर १
f (x) = `(4x + 3)/(6x - 4) `
`f (f (x)) = (4 f(x) + 3)/(6 f(x) - 4)`
`f(f(x))= (4 ((4x + 3)/(6x - 4))+3)/(6((4x + 3)/(6x - 4))-4)`
` fof (x) = (((16x + 12 + 18x - 12)/(6x -4)))/(((24x + 18 - 24 x + 16)/(6x - 4)))`
` fof (x) = (34x)/34`
fof (x) = x
For inversere y = `(4x + 3)/(6x - 4)`
6xy - 4y = 4x + 3
6 xy - 4x = 4y + 3
x(6y - 4) = 4y + 3
`x = (4y + 3)/(6y - 4) ⇒ y = (4x + 3)/(6x - 4)`
`⇒ f^(-1) (x) = (4x + 3)/(6x - 4)`
उत्तर २
`f(x) = (4x +3)/(6x -4) x ≠ 2/3`
`f "of"(x) = (4((4x +3)/(6x - 4))+ 3)/(6((4x +3)/(6x - 4)) - 4)`
= `(16x + 12 + 18x - 12)/(24x + 18 - 24x + 16)`
= `(34x)/(34) = x`
Therefore, fof (x) = x, for all `x ≠ 2/3`
⇒ fof = I
Hence, the given function f is invertible and the inverse of f is itself.
`y = (4x + 3)/(6x - 4)`
`6xy - 4y = 4x +3`
`6xy - 4y = 4y +3`
`x = (4y + 3)/(6y -4)`
∴ `f(x) = (4x +3)/(6x - 4)`
संबंधित प्रश्न
Let N denote the set of all natural numbers and R be the relation on N × N defined by (a, b) R (c, d) if ad (b + c) = bc (a + d). Show that R is an equivalence relation.
Check whether the relation R defined in the set {1, 2, 3, 4, 5, 6} as R = {(a, b): b = a + 1} is reflexive, symmetric, or transitive.
Given an example of a relation. Which is Reflexive and symmetric but not transitive.
Given an example of a relation. Which is Symmetric and transitive but not reflexive.
Show that the relation R in the set A of points in a plane given by R = {(P, Q): distance of the point P from the origin is same as the distance of the point Q from the origin}, is an equivalence relation. Further, show that the set of all points related to a point P ≠ (0, 0) is the circle passing through P with origin as centre.
Show that the relation R defined in the set A of all polygons as R = {(P1, P2): P1 and P2have same number of sides}, is an equivalence relation. What is the set of all elements in A related to the right angle triangle T with sides 3, 4 and 5?
Test whether the following relation R1 is (i) reflexive (ii) symmetric and (iii) transitive :
R1 on Q0 defined by (a, b) ∈ R1 ⇔ a = 1/b.
If A = {1, 2, 3, 4} define relations on A which have properties of being symmetric but neither reflexive nor transitive ?
Give an example of a relation which is transitive but neither reflexive nor symmetric?
Let A = {a, b, c} and the relation R be defined on A as follows: R = {(a, a), (b, c), (a, b)}. Then, write minimum number of ordered pairs to be added in R to make it reflexive and transitive.
Show that the relation R on the set A = {x ∈ Z ; 0 ≤ x ≤ 12}, given by R = {(a, b) : a = b}, is an equivalence relation. Find the set of all elements related to 1.
Let C be the set of all complex numbers and C0 be the set of all no-zero complex numbers. Let a relation R on C0 be defined as
`z_1 R z_2 ⇔ (z_1 -z_2)/(z_1 + z_2) ` is real for all z1, z2 ∈ C0 .
Show that R is an equivalence relation.
Let R be a relation on the set N given by
R = {(a, b) : a = b − 2, b > 6}. Then,
If A = {a, b, c}, then the relation R = {(b, c)} on A is _______________ .
Let A = {2, 3, 4, 5, ..., 17, 18}. Let '≃' be the equivalence relation on A × A, cartesian product of Awith itself, defined by (a, b) ≃ (c, d) if ad = bc. Then, the number of ordered pairs of the equivalence class of (3, 2) is _______________ .
Let A = {1, 2, 3}. Then, the number of relations containing (1, 2) and (1, 3) which are reflexive and symmetric but not transitive is ______.
R is a relation from {11, 12, 13} to {8, 10, 12} defined by y = x − 3. Then, R−1 is ______________ .
Write the relation in the Roster form and hence find its domain and range:
R2 = `{("a", 1/"a") "/" 0 < "a" ≤ 5, "a" ∈ "N"}`
Let L denote the set of all straight lines in a plane. Let a relation R be defined by lRm if and only if l is perpendicular to m ∀ l, m ∈ L. Then R is ______.
Consider the set A = {1, 2, 3} and the relation R = {(1, 2), (1, 3)}. R is a transitive relation.
The following defines a relation on N:
x y is square of an integer x, y ∈ N
Determine which of the above relations are reflexive, symmetric and transitive.
Consider the non-empty set consisting of children in a family and a relation R defined as aRb if a is brother of b. Then R is ______.
If a relation R on the set {1, 2, 3} be defined by R = {(1, 2)}, then R is ______.
Let A = {1, 2, 3}, then the relation R = {(1, 1), (1, 2), (2, 1)} on A is ____________.
Let A = {1, 2, 3}, then the domain of the relation R = {(1, 1), (2, 3), (2, 1)} defined on A is ____________.
A relation S in the set of real numbers is defined as `"xSy" => "x" - "y" + sqrt3` is an irrational number, then relation S is ____________.
Find: `int (x + 1)/((x^2 + 1)x) dx`
A market research group conducted a survey of 2000 consumers and reported that 1720 consumers like product P1 and 1450 consumers like product P2. What is the least number that must have liked both the products?
Given a non-empty set X, define the relation R in P(X) as follows:
For A, B ∈ P(X), (4, B) ∈ R iff A ⊂ B. Prove that R is reflexive, transitive and not symmetric.