मराठी

If F (X) = 4 X + 3 6 X − 4 , X ≠ 2 3 , Show that Fof (X) = X for All X ≠ 2 3 . Also, Find the Inverse of F. - Mathematics

Advertisements
Advertisements

प्रश्न

If f (x)  = `(4x + 3)/(6x - 4) , x ≠ 2/3`, show that fof (x) = x for all ` x ≠ 2/3` . Also, find the inverse of f.

बेरीज

उत्तर १

f (x)  = `(4x + 3)/(6x - 4) ` 

`f (f (x)) = (4 f(x) + 3)/(6 f(x) - 4)`

`f(f(x))= (4 ((4x + 3)/(6x - 4))+3)/(6((4x + 3)/(6x - 4))-4)`

` fof (x) = (((16x + 12 + 18x - 12)/(6x -4)))/(((24x + 18 - 24 x + 16)/(6x - 4)))`

` fof (x) = (34x)/34`

fof (x) = x

For inversere y = `(4x + 3)/(6x - 4)`

6xy - 4y = 4x + 3

6 xy - 4x = 4y + 3 

x(6y - 4) = 4y + 3

`x = (4y + 3)/(6y - 4) ⇒ y = (4x + 3)/(6x - 4)`

`⇒ f^(-1) (x) = (4x + 3)/(6x - 4)`

shaalaa.com

उत्तर २

`f(x) = (4x +3)/(6x -4)      x ≠ 2/3`

`f "of"(x) = (4((4x +3)/(6x - 4))+ 3)/(6((4x +3)/(6x - 4)) - 4)`

= `(16x + 12 + 18x - 12)/(24x + 18 - 24x + 16)`

= `(34x)/(34) = x`

Therefore, fof (x) = x, for all `x ≠ 2/3`
⇒ fof = I
Hence, the given function f is invertible and the inverse of f is itself.

`y = (4x + 3)/(6x - 4)`

`6xy - 4y = 4x +3`

`6xy - 4y = 4y +3`

`x = (4y + 3)/(6y -4)`

∴ `f(x) = (4x +3)/(6x - 4)`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
2018-2019 (March) 65/3/3

संबंधित प्रश्‍न

determination of whether the following relations are reflexive, symmetric, and transitive:

Relation R in the set A of human beings in a town at a particular time given by (c) R = {(x, y): x is exactly 7 cm taller than y}


Given an example of a relation. Which is Symmetric but neither reflexive nor transitive.


Three relations R1, R2 and R3 are defined on a set A = {a, b, c} as follows:
R1 = {(a, a), (a, b), (a, c), (b, b), (b, c), (c, a), (c, b), (c, c)}
R2 = {(a, a)}
R3 = {(b, c)}
R4 = {(a, b), (b, c), (c, a)}.

Find whether or not each of the relations R1, R2, R3, R4 on A is (i) reflexive (ii) symmetric and (iii) transitive.


Test whether the following relation R1 is  (i) reflexive (ii) symmetric and (iii) transitive :

R1 on Q0 defined by (a, b) ∈ R1 ⇔ = 1/b.


Test whether the following relation R2 is (i) reflexive (ii) symmetric and (iii) transitive:

R2 on Z defined by (a, b) ∈ R2 ⇔ |a – b| ≤ 5


Defines a relation on N :

xy is square of an integer, x, y ∈ N

Determine the above relation is reflexive, symmetric and transitive.


Show that the relation R on the set Z of integers, given by
R = {(a, b) : 2 divides a – b},  is an equivalence relation.


If R and S are relations on a set A, then prove that R is reflexive and S is any relation ⇒ R ∪ S is reflexive ?


For the set A = {1, 2, 3}, define a relation R on the set A as follows:
R = {(1, 1), (2, 2), (3, 3), (1, 3)}
Write the ordered pairs to be added to R to make the smallest equivalence relation.


If a relation R is defined on the set Z of integers as follows:
(a, b) ∈ R ⇔ a2 + b2 = 25. Then, domain (R) is ___________


Let A = {2, 3, 4, 5, ..., 17, 18}. Let '≃' be the equivalence relation on A × A, cartesian product of Awith itself, defined by (a, b) ≃ (c, d) if ad = bc. Then, the number of ordered pairs of the equivalence class of (3, 2) is _______________ .


R is a relation from {11, 12, 13} to {8, 10, 12} defined by y = x − 3. Then, R−1 is ______________ .


S is a relation over the set R of all real numbers and it is given by (a, b) ∈ S ⇔ ab ≥ 0. Then, S is _______________ .


Show that the relation R on the set Z of all integers, given by R = {(a,b) : 2 divides (a-b)} is an equivalence relation.


If A = {a, b, c}, B = (x , y} find A × B.


If A = {a, b, c}, B = (x , y} find B × B.


Let A = {1, 2, 3, 4}, B = {4, 5, 6}, C = {5, 6}. Find A × (B ∩ C).


Write the relation in the Roster form and hence find its domain and range :
R1 = {(a, a2) / a is prime number less than 15}


For real numbers x and y, define xRy if and only if x – y + `sqrt(2)` is an irrational number. Then the relation R is ______.


Let A = {a, b, c} and the relation R be defined on A as follows:
R = {(a, a), (b, c), (a, b)}.
Then, write minimum number of ordered pairs to be added in R to make R reflexive and transitive


Let n be a fixed positive integer. Define a relation R in Z as follows: ∀ a, b ∈ Z, aRb if and only if a – b is divisible by n. Show that R is an equivalance relation


If A = {1, 2, 3, 4 }, define relations on A which have properties of being:
reflexive, transitive but not symmetric


Given A = {2, 3, 4}, B = {2, 5, 6, 7}. Construct an example of the following:
a mapping from B to A


The following defines a relation on N:
x y is square of an integer x, y ∈ N
Determine which of the above relations are reflexive, symmetric and transitive.


Every relation which is symmetric and transitive is also reflexive.


Let A = {1, 2, 3} and R = {(1, 2), (2, 3), (1, 3)} be a relation on A. Then, R is ____________.


Sherlin and Danju are playing Ludo at home during Covid-19. While rolling the dice, Sherlin’s sister Raji observed and noted the possible outcomes of the throw every time belongs to set {1,2,3,4,5,6}. Let A be the set of players while B be the set of all possible outcomes.

A = {S, D}, B = {1,2,3,4,5,6}

  • Let R ∶ B → B be defined by R = {(x, y): y is divisible by x} is ____________.

Let A = {3, 5}. Then number of reflexive relations on A is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×