Advertisements
Advertisements
प्रश्न
If A = {1, 2, 3, 4 }, define relations on A which have properties of being:
reflexive, transitive but not symmetric
उत्तर
Given that, A = {1, 2, 3}.
Let R1 = {(1, 1), (1, 2), (1, 3), (2, 3), (2, 2), (1, 3), (3, 3)}
R1 is reflexive as (1, 1), (2, 2) and (3, 3) lie is R1.
R1 is transitive as (1, 2) ∈ R1, (2, 3) ∈ R1 ⇒ (1, 3) ∈ R1
Now, (1, 2) ∈ R1 ⇒ (2, 1) ∉ R1.
APPEARS IN
संबंधित प्रश्न
determination of whether the following relations are reflexive, symmetric, and transitive:
Relation R in the set A = {1, 2, 3, 4, 5, 6} as R = {(x, y): y is divisible by x}
Check whether the relation R in R defined by R = {(a, b): a ≤ b3} is reflexive, symmetric, or transitive.
Given an example of a relation. Which is Reflexive and symmetric but not transitive.
Show that the relation R in the set A of points in a plane given by R = {(P, Q): distance of the point P from the origin is same as the distance of the point Q from the origin}, is an equivalence relation. Further, show that the set of all points related to a point P ≠ (0, 0) is the circle passing through P with origin as centre.
Given a non-empty set X, consider P (X), which is the set of all subsets of X. Define the relation R in P(X) as follows:
For subsets A, B in P(X), ARB if and only if A ⊂ B. Is R an equivalence relation on P(X)? Justify your answer.
Let A = {1, 2, 3}. Then number of equivalence relations containing (1, 2) is
(A) 1
(B) 2
(C) 3
(D) 4
Test whether the following relation R3 is (i) reflexive (ii) symmetric and (iii) transitive:
R3 on R is defined by (a, b) ∈ R3 `⇔` a2 – 4ab + 3b2 = 0.
The following relation is defined on the set of real numbers.
aRb if a – b > 0
Find whether relation is reflexive, symmetric or transitive.
If A = {1, 2, 3, 4} define relations on A which have properties of being reflexive, symmetric and transitive ?
Is it true that every relation which is symmetric and transitive is also reflexive? Give reasons.
Give an example of a relation which is symmetric but neither reflexive nor transitive?
Let A = {1, 2, 3} and R = {(1, 2), (1, 1), (2, 3)} be a relation on A. What minimum number of ordered pairs may be added to R so that it may become a transitive relation on A.
If R and S are transitive relations on a set A, then prove that R ∪ S may not be a transitive relation on A.
Let A = {0, 1, 2, 3} and R be a relation on A defined as
R = {(0, 0), (0, 1), (0, 3), (1, 0), (1, 1), (2, 2), (3, 0), (3, 3)}
Is R reflexive? symmetric? transitive?
If A = {a, b, c}, then the relation R = {(b, c)} on A is _______________ .
If A = {a, b, c}, B = (x , y} find B × B.
Let A = {1, 2, 3, 4}, B = {4, 5, 6}, C = {5, 6}. Find (A × B) ∪ (A × C).
If A = {1, 2, 3, 4 }, define relations on A which have properties of being:
reflexive, symmetric and transitive
Let R be relation defined on the set of natural number N as follows:
R = {(x, y): x ∈N, y ∈N, 2x + y = 41}. Find the domain and range of the relation R. Also verify whether R is reflexive, symmetric and transitive
Let A = {1, 2, 3, ... 9} and R be the relation in A × A defined by (a, b) R(c, d) if a + d = b + c for (a, b), (c, d) in A × A. Prove that R is an equivalence relation and also obtain the equivalent class [(2, 5)]
Let A = { 2, 3, 6 } Which of the following relations on A are reflexive?
The relation R is defined on the set of natural numbers as {(a, b) : a = 2b}. Then, R-1 is given by ____________.
A relation R in set A = {1, 2, 3} is defined as R = {(1, 1), (1, 2), (2, 2), (3, 3)}. Which of the following ordered pair in R shall be removed to make it an equivalence relation in A?
Given set A = {a, b, c}. An identity relation in set A is ____________.
A general election of Lok Sabha is a gigantic exercise. About 911 million people were eligible to vote and voter turnout was about 67%, the highest ever
Let I be the set of all citizens of India who were eligible to exercise their voting right in the general election held in 2019. A relation ‘R’ is defined on I as follows:
R = {(V1, V2) ∶ V1, V2 ∈ I and both use their voting right in the general election - 2019}
- The above-defined relation R is ____________.
If A is a finite set consisting of n elements, then the number of reflexive relations on A is
Which one of the following relations on the set of real numbers R is an equivalence relation?
On the set N of all natural numbers, define the relation R by a R b, if GCD of a and b is 2. Then, R is
A relation R on (1, 2, 3) is given by R = {(1, 1), (2, 2), (1, 2), (3, 3), (2, 3)}. Then the relation R is ______.