Advertisements
Advertisements
प्रश्न
Show that the relation R in the set A of points in a plane given by R = {(P, Q): distance of the point P from the origin is same as the distance of the point Q from the origin}, is an equivalence relation. Further, show that the set of all points related to a point P ≠ (0, 0) is the circle passing through P with origin as centre.
उत्तर
R = {(P, Q): distance of point P from the origin is the same as the distance of point Q from the origin}
Let P (x1, y1), (x2, y2) and O (0, 0)
∴ OP = OQ = `sqrt(x_1^2+ y_1^2)`
= `sqrt(x_2^2 + y_2^2)`
= `x_1^2 + y_1^2 = x_2^2 + y_2^2`
(i) Reflexive:
P ∈ A
distance of the point P from origin is same as the distance of the point P from origin.
OP = OP
(P, P) ∈ R
∴ R is reflexive.
(ii) Symmetric:
Now, Let (P, Q) ∈ R.
⇒ The distance of point P from the origin is the same as the distance of point Q from the origin.
⇒ The distance of point Q from the origin is the same as the distance of point P from the origin.
OP = OQ
OQ = OP
⇒ (Q, P) ∈ R
∴ R is symmetric.
(iii) Transitive:
P, Q, S ∈ R, (P, Q) ∈ Rand (Q, S) ∈ R
OP = OQ and OQ=OS
OP = OS
(P, S) ∈ R
∴ R is transitive.
Hence R is an equivalence relation. We have to find the set of points related to P ≠ (0, 0)
As `x_1^2 + y_1^2 = x_2^2 + y_2^2 = r^2`
= x2 + y2 = r2
which represents a circle with centre (0, 0) and radius = r.
APPEARS IN
संबंधित प्रश्न
Let A = {1, 2, 3,......, 9} and R be the relation in A × A defined by (a, b) R (c, d) if a + d = b + c for (a, b), (c, d) in A × A. Prove that R is an equivalence relation. Also, obtain the equivalence class [(2, 5)].
determination of whether the following relations are reflexive, symmetric, and transitive:
Relation R in the set A = {1, 2, 3, 4, 5, 6} as R = {(x, y): y is divisible by x}
Given an example of a relation. Which is Reflexive and transitive but not symmetric.
Let L be the set of all lines in XY plane and R be the relation in L defined as R = {(L1, L2): L1 is parallel to L2}. Show that R is an equivalence relation. Find the set of all lines related to the line y = 2x + 4.
Let R be the relation in the set {1, 2, 3, 4} given by R = {(1, 2), (2, 2), (1, 1), (4, 4), (1, 3), (3, 3), (3, 2)}. Choose the correct answer.
Let A = {1, 2, 3}. Then number of relations containing (1, 2) and (1, 3) which are reflexive and symmetric but not transitive is
(A) 1 (B) 2 (C) 3 (D) 4
Let A be the set of all human beings in a town at a particular time. Determine whether of the following relation is reflexive, symmetric and transitive:
R = {(x, y) : x is father of and y}
Test whether the following relation R2 is (i) reflexive (ii) symmetric and (iii) transitive:
R2 on Z defined by (a, b) ∈ R2 ⇔ |a – b| ≤ 5
Let R be a relation defined on the set of natural numbers N as
R = {(x, y) : x, y ∈ N, 2x + y = 41}
Find the domain and range of R. Also, verify whether R is (i) reflexive, (ii) symmetric (iii) transitive.
Is it true that every relation which is symmetric and transitive is also reflexive? Give reasons.
Show that the relation R on the set Z of integers, given by
R = {(a, b) : 2 divides a – b}, is an equivalence relation.
Let R be a relation on the set A of ordered pair of integers defined by (x, y) R (u, v) if xv = yu. Show that R is an equivalence relation.
Let A = {2, 3, 4, 5} and B = {1, 3, 4}. If R is the relation from A to B given by a R b if "a is a divisor of b". Write R as a set of ordered pairs.
State the reason for the relation R on the set {1, 2, 3} given by R = {(1, 2), (2, 1)} to be transitive ?
Let R = {(a, a3) : a is a prime number less than 5} be a relation. Find the range of R.
If a relation R is defined on the set Z of integers as follows:
(a, b) ∈ R ⇔ a2 + b2 = 25. Then, domain (R) is ___________
If A = {a, b, c}, then the relation R = {(b, c)} on A is _______________ .
Let R = {(a, a), (b, b), (c, c), (a, b)} be a relation on set A = a, b, c. Then, R is _______________ .
If R is a relation on the set A = {1, 2, 3, 4, 5, 6, 7, 8, 9} given by x R y ⇔ y = 3 x, then R = _____________ .
Let R be the relation on the set A = {1, 2, 3, 4} given by R = {(1, 2), (2, 2), (1, 1), (4, 4), (1, 3), (3, 3), (3, 2)}. Then, _____________________ .
Show that the relation S in the set A = [x ∈ Z : 0 ≤ x ≤ 12] given by S = [(a, b) : a, b ∈ Z, ∣a − b∣ is divisible by 3] is an equivalence relation.
If A = {a, b, c}, B = (x , y} find B × A.
If A = {a, b, c}, B = (x , y} find A × A.
Let A = {1, 2, 3, 4}, B = {4, 5, 6}, C = {5, 6}. Find (A × B) ∪ (A × C).
Let R be a relation on the set N of natural numbers defined by nRm if n divides m. Then R is ______.
Let L denote the set of all straight lines in a plane. Let a relation R be defined by lRm if and only if l is perpendicular to m ∀ l, m ∈ L. Then R is ______.
For real numbers x and y, define xRy if and only if x – y + `sqrt(2)` is an irrational number. Then the relation R is ______.
Given A = {2, 3, 4}, B = {2, 5, 6, 7}. Construct an example of the following:
an injective mapping from A to B
Let R = {(3, 1), (1, 3), (3, 3)} be a relation defined on the set A = {1, 2, 3}. Then R is symmetric, transitive but not reflexive.
R = {(1, 1), (2, 2), (1, 2), (2, 1), (2, 3)} be a relation on A, then R is ____________.
A relation R in set A = {1, 2, 3} is defined as R = {(1, 1), (1, 2), (2, 2), (3, 3)}. Which of the following ordered pair in R shall be removed to make it an equivalence relation in A?
Let the relation R in the set A = {x ∈ Z : 0 ≤ x ≤ 12}, given by R = {(a, b) : |a – b| is a multiple of 4}. Then [1], the equivalence class containing 1, is:
An organization conducted a bike race under 2 different categories-boys and girls. Totally there were 250 participants. Among all of them finally, three from Category 1 and two from Category 2 were selected for the final race. Ravi forms two sets B and G with these participants for his college project. Let B = {b1,b2,b3} G={g1,g2} where B represents the set of boys selected and G the set of girls who were selected for the final race.
Ravi decides to explore these sets for various types of relations and functions.
- Let R: B → B be defined by R = {(x, y): x and y are students of same sex}, Then this relation R is ____________.
If A = {1,2,3}, B = {4,6,9} and R is a relation from A to B defined by ‘x is smaller than y’. The range of R is ____________.
Let a set A = A1 ∪ A2 ∪ ... ∪ Ak, where Ai ∩ Aj = Φ for i ≠ j, 1 ≤ i, j ≤ k. Define the relation R from A to A by R = {(x, y): y ∈ Ai if and only if x ∈ Ai, 1 ≤ i ≤ k}. Then, R is ______.
Let f(x)= ax2 + bx + c be such that f(1) = 3, f(–2) = λ and f(3) = 4. If f(0) + f(1) + f(–2) + f(3) = 14, then λ is equal to ______.
Let A = {3, 5}. Then number of reflexive relations on A is ______.