मराठी

Show that the relation R in the set A of points in a plane given by R = {(P, Q): distance of the point P from the origin is same as the distance of the point Q from the origin}, is an - Mathematics

Advertisements
Advertisements

प्रश्न

Show that the relation R in the set A of points in a plane given by R = {(P, Q): distance of the point P from the origin is same as the distance of the point Q from the origin}, is an equivalence relation. Further, show that the set of all points related to a point P ≠ (0, 0) is the circle passing through P with origin as centre.

बेरीज

उत्तर

R = {(P, Q): distance of point P from the origin is the same as the distance of point Q from the origin}

Let P (x1, y1), (x2, y2) and O (0, 0)

∴ OP = OQ = `sqrt(x_1^2+ y_1^2)`

= `sqrt(x_2^2 + y_2^2)`

= `x_1^2 + y_1^2 = x_2^2 + y_2^2`

(i) Reflexive:

P ∈ A

distance of the point P from origin is same as the distance of the point P from origin.

OP = OP

(P, P) ∈ R

∴ R is reflexive.

(ii) Symmetric:

Now, Let (P, Q) ∈ R.

⇒ The distance of point P from the origin is the same as the distance of point Q from the origin.

⇒ The distance of point Q from the origin is the same as the distance of point P from the origin.

OP = OQ

OQ = OP

⇒ (Q, P) ∈ R

∴ R is symmetric.

(iii) Transitive:

P, Q, S ∈ R, (P, Q) ∈ Rand (Q, S) ∈ R

OP = OQ and OQ=OS

OP = OS

(P, S) ∈ R

∴ R is transitive.

Hence R is an equivalence relation. We have to find the set of points related to P ≠ (0, 0)

As `x_1^2 + y_1^2 = x_2^2 + y_2^2 = r^2`

= x2 + y2 = r2

which represents a circle with centre (0, 0) and radius = r.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 1: Relations and Functions - Exercise 1.1 [पृष्ठ ६]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 12
पाठ 1 Relations and Functions
Exercise 1.1 | Q 11 | पृष्ठ ६

संबंधित प्रश्‍न

Let A = {1, 2, 3,......, 9} and R be the relation in A × A defined by (a, b) R (c, d) if a + d = b + c for (a, b), (c, d) in A × A. Prove that R is an equivalence relation. Also, obtain the equivalence class [(2, 5)].


determination of whether the following relations are reflexive, symmetric, and transitive:

Relation R in the set A = {1, 2, 3, 4, 5, 6} as R = {(x, y): y is divisible by x}


Given an example of a relation. Which is Reflexive and transitive but not symmetric.


Let L be the set of all lines in XY plane and R be the relation in L defined as R = {(L1, L2): L1 is parallel to L2}. Show that R is an equivalence relation. Find the set of all lines related to the line y = 2x + 4.


Let R be the relation in the set {1, 2, 3, 4} given by R = {(1, 2), (2, 2), (1, 1), (4, 4), (1, 3), (3, 3), (3, 2)}. Choose the correct answer.


Let A = {1, 2, 3}. Then number of relations containing (1, 2) and (1, 3) which are reflexive and symmetric but not transitive is

(A) 1 (B) 2 (C) 3 (D) 4


Let A be the set of all human beings in a town at a particular time. Determine whether of the following relation is reflexive, symmetric and transitive:

R = {(x, y) : x is father of and y}


Test whether the following relation R2 is (i) reflexive (ii) symmetric and (iii) transitive:

R2 on Z defined by (a, b) ∈ R2 ⇔ |a – b| ≤ 5


Let R be a relation defined on the set of natural numbers N as
R = {(xy) : x N, 2x + y = 41}
Find the domain and range of R. Also, verify whether R is (i) reflexive, (ii) symmetric (iii) transitive.


Is it true that every relation which is symmetric and transitive is also reflexive? Give reasons.


Show that the relation R on the set Z of integers, given by
R = {(a, b) : 2 divides a – b},  is an equivalence relation.


Let R be a relation on the set A of ordered pair of integers defined by (x, y) R (u, v) if xv = yu. Show that R is an equivalence relation.


Let A = {2, 3, 4, 5} and B = {1, 3, 4}. If R is the relation from A to B given by a R b if "a is a divisor of b". Write R as a set of ordered pairs.


State the reason for the relation R on the set {1, 2, 3} given by R = {(1, 2), (2, 1)} to be transitive ?


Let R = {(a, a3) : a is a prime number less than 5} be a relation. Find the range of R.


If a relation R is defined on the set Z of integers as follows:
(a, b) ∈ R ⇔ a2 + b2 = 25. Then, domain (R) is ___________


If A = {a, b, c}, then the relation R = {(b, c)} on A is _______________ .


Let R = {(a, a), (b, b), (c, c), (a, b)} be a relation on set A = a, b, c. Then, R is _______________ .


If R is a relation on the set A = {1, 2, 3, 4, 5, 6, 7, 8, 9} given by x R y ⇔ y = 3 x, then R = _____________ .


Let R be the relation on the set A = {1, 2, 3, 4} given by R = {(1, 2), (2, 2), (1, 1), (4, 4), (1, 3), (3, 3), (3, 2)}. Then, _____________________ .


Show that the relation S in the set A = [x ∈ Z : 0 ≤ x ≤ 12] given by S = [(a, b) : a, b ∈ Z, ∣a − b∣ is divisible by 3] is an equivalence relation.


If A = {a, b, c}, B = (x , y} find B × A.


If A = {a, b, c}, B = (x , y} find A × A.


Let A = {1, 2, 3, 4}, B = {4, 5, 6}, C = {5, 6}. Find (A × B) ∪ (A × C).


Let R be a relation on the set N of natural numbers defined by nRm if n divides m. Then R is ______.


Let L denote the set of all straight lines in a plane. Let a relation R be defined by lRm if and only if l is perpendicular to m ∀ l, m ∈ L. Then R is ______.


For real numbers x and y, define xRy if and only if x – y + `sqrt(2)` is an irrational number. Then the relation R is ______.


Given A = {2, 3, 4}, B = {2, 5, 6, 7}. Construct an example of the following:
an injective mapping from A to B


Let R = {(3, 1), (1, 3), (3, 3)} be a relation defined on the set A = {1, 2, 3}. Then R is symmetric, transitive but not reflexive.


R = {(1, 1), (2, 2), (1, 2), (2, 1), (2, 3)} be a relation on A, then R is ____________.


A relation R in set A = {1, 2, 3} is defined as R = {(1, 1), (1, 2), (2, 2), (3, 3)}. Which of the following ordered pair in R shall be removed to make it an equivalence relation in A?


Let the relation R in the set A = {x ∈ Z : 0 ≤ x ≤ 12}, given by R = {(a, b) : |a – b| is a multiple of 4}. Then [1], the equivalence class containing 1, is:


An organization conducted a bike race under 2 different categories-boys and girls. Totally there were 250 participants. Among all of them finally, three from Category 1 and two from Category 2 were selected for the final race. Ravi forms two sets B and G with these participants for his college project. Let B = {b1,b2,b3} G={g1,g2} where B represents the set of boys selected and G the set of girls who were selected for the final race.

Ravi decides to explore these sets for various types of relations and functions.

  • Let R: B → B be defined by R = {(x, y): x and y are students of same sex}, Then this relation R is ____________.

If A = {1,2,3}, B = {4,6,9} and R is a relation from A to B defined by ‘x is smaller than y’. The range of R is ____________.


Let a set A = A1 ∪ A2 ∪ ... ∪ Ak, where Ai ∩ Aj = Φ for i ≠ j, 1 ≤ i, j ≤ k. Define the relation R from A to A by R = {(x, y): y ∈ Ai if and only if x ∈ Ai, 1 ≤ i ≤ k}. Then, R is ______.


Let f(x)= ax2 + bx + c be such that f(1) = 3, f(–2) = λ and f(3) = 4. If f(0) + f(1) + f(–2) + f(3) = 14, then λ is equal to ______.


Let A = {3, 5}. Then number of reflexive relations on A is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×