मराठी

Given an Example of a Relation. Which Is Reflexive and Transitive but Not Symmetric. - Mathematics

Advertisements
Advertisements

प्रश्न

Given an example of a relation. Which is Reflexive and transitive but not symmetric.

उत्तर

Define a relation R in R as:

R = {ab): a3 ≥ b3}

Clearly (aa) ∈ R as a3 = a3.

∴R is reflexive.

Now,

(2, 1) ∈ R (as 23 ≥ 13)

But,

(1, 2) ∉ R (as 13 < 23)

∴ R is not symmetric.

Now,

Let (ab), (bc) ∈ R.

⇒ a3 ≥ b3 and b3 ≥ c3

⇒ a3 ≥ c3

⇒ (ac) ∈ R

∴R is transitive.

Hence, relation R is reflexive and transitive but not symmetric.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 1: Relations and Functions - Exercise 1.1 [पृष्ठ ६]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 12
पाठ 1 Relations and Functions
Exercise 1.1 | Q 10.4 | पृष्ठ ६

संबंधित प्रश्‍न

determination of whether the following relations are reflexive, symmetric, and transitive:

Relation R in the set Z of all integers defined as
R = {(x, y): x − y is an integer}


Check whether the relation R defined in the set {1, 2, 3, 4, 5, 6} as R = {(a, b): b = a + 1} is reflexive, symmetric, or transitive.


Show that the relation R in the set A of all the books in a library of a college, given by R = {(x, y): x and y have same number of pages} is an equivalence relation.


Let A = {x ∈ Z : 0 ≤ x ≤ 12}. Show that R = {(ab) : a∈ A, |a – b| is divisible by 4}is an equivalence relation. Find the set of all elements related to 1. Also write the equivalence class [2]


Let A = {1, 2, 3}, and let R1 = {(1, 1), (1, 3), (3, 1), (2, 2), (2, 1), (3, 3)}, R2 = {(2, 2), (3, 1), (1, 3)}, R3 = {(1, 3), (3, 3)}. Find whether or not each of the relations R1, R2, R3 on A is (i) reflexive (ii) symmetric (iii) transitive.


The following relation is defined on the set of real numbers.
aRb if a – b > 0

Find whether relation is reflexive, symmetric or transitive.


Is it true that every relation which is symmetric and transitive is also reflexive? Give reasons.


Give an example of a relation which is reflexive and symmetric but not transitive ?


Give an example of a relation which is symmetric but neither reflexive nor transitive?


Let A = {1, 2, 3} and R = {(1, 2), (1, 1), (2, 3)} be a relation on A. What minimum number of ordered pairs may be added to R so that it may become a transitive relation on A.


Let R be a relation on the set A of ordered pair of integers defined by (x, y) R (u, v) if xv = yu. Show that R is an equivalence relation.


Let O be the origin. We define a relation between two points P and Q in a plane if OP = OQ. Show that the relation, so defined is an equivalence relation.


Write the identity relation on set A = {a, b, c}.


If R is a symmetric relation on a set A, then write a relation between R and R−1.


Define a reflexive relation ?


Let R be the equivalence relation on the set Z of the integers given by R = { (ab) : 2 divides }.

Write the equivalence class [0].


S is a relation over the set R of all real numbers and it is given by (a, b) ∈ S ⇔ ab ≥ 0. Then, S is _______________ .


Mark the correct alternative in the following question:

Let A = {1, 2, 3} and consider the relation R = {(1, 1), (2, 2), (3, 3), (1, 2), (2, 3), (1, 3)}. Then, R is _______________ .


Mark the correct alternative in the following question:

The relation S defined on the set R of all real number by the rule aSb if a  b is _______________ .


Mark the correct alternative in the following question:

Consider a non-empty set consisting of children in a family and a relation R defined as aRb if a is brother of b. Then, R is _____________ .


Let A = {1, 2, 3, 4}, B = {4, 5, 6}, C = {5, 6}. Find (A × B) ∪ (A × C).


In the set of natural numbers N, define a relation R as follows: ∀ n, m ∈ N, nRm if on division by 5 each of the integers n and m leaves the remainder less than 5, i.e. one of the numbers 0, 1, 2, 3 and 4. Show that R is equivalence relation. Also, obtain the pairwise disjoint subsets determined by R


Consider the set A = {1, 2, 3} and R be the smallest equivalence relation on A, then R = ______


Consider the set A = {1, 2, 3} and the relation R = {(1, 2), (1, 3)}. R is a transitive relation.


Let n be a fixed positive integer. Define a relation R in Z as follows: ∀ a, b ∈ Z, aRb if and only if a – b is divisible by n. Show that R is an equivalance relation


The following defines a relation on N:
x is greater than y, x, y ∈ N
Determine which of the above relations are reflexive, symmetric and transitive.


Let A = {1, 2, 3}, then the relation R = {(1, 1), (1, 2), (2, 1)} on A is ____________.


Let T be the set of all triangles in the Euclidean plane, and let a relation R on T be defined as aRb if a is congruent to b ∀ a, b ∈ T. Then R is ____________.


Let S = {1, 2, 3, 4, 5} and let A = S x S. Define the relation R on A as follows:
(a, b) R (c, d) iff ad = cb. Then, R is ____________.


Let R be the relation “is congruent to” on the set of all triangles in a plane is ____________.


A general election of Lok Sabha is a gigantic exercise. About 911 million people were eligible to vote and voter turnout was about 67%, the highest ever


Let I be the set of all citizens of India who were eligible to exercise their voting right in the general election held in 2019. A relation ‘R’ is defined on I as follows:

R = {(V1, V2) ∶ V1, V2 ∈ I and both use their voting right in the general election - 2019}

  • The above-defined relation R is ____________.

Sherlin and Danju are playing Ludo at home during Covid-19. While rolling the dice, Sherlin’s sister Raji observed and noted the possible outcomes of the throw every time belongs to set {1,2,3,4,5,6}. Let A be the set of players while B be the set of all possible outcomes.

A = {S, D}, B = {1,2,3,4,5,6}

  • Let R ∶ B → B be defined by R = {(x, y): y is divisible by x} is ____________.

Sherlin and Danju are playing Ludo at home during Covid-19. While rolling the dice, Sherlin’s sister Raji observed and noted the possible outcomes of the throw every time belongs to set {1,2,3,4,5,6}. Let A be the set of players while B be the set of all possible outcomes.

A = {S, D}, B = {1,2,3,4,5,6}

  • Let R be a relation on B defined by R = {(1,2), (2,2), (1,3), (3,4), (3,1), (4,3), (5,5)}. Then R is:

An organization conducted a bike race under 2 different categories-boys and girls. Totally there were 250 participants. Among all of them finally, three from Category 1 and two from Category 2 were selected for the final race. Ravi forms two sets B and G with these participants for his college project. Let B = {b1,b2,b3} G={g1,g2} where B represents the set of boys selected and G the set of girls who were selected for the final race.

Ravi decides to explore these sets for various types of relations and functions.

  • Let R: B → B be defined by R = {(x, y): x and y are students of same sex}, Then this relation R is ____________.

Students of Grade 9, planned to plant saplings along straight lines, parallel to each other to one side of the playground ensuring that they had enough play area. Let us assume that they planted one of the rows of the saplings along the line y = x − 4. Let L be the set of all lines which are parallel on the ground and R be a relation on L.

Answer the following using the above information.

  • Let R = `{ ("L"_1, "L"_2) ∶ "L"_1 bot "L"_2  "where"  "L"_1, "L"_2 in "L" }` which of the following is true?

The relation R = {(1,1),(2,2),(3,3)} on {1,2,3} is ____________.


The number of surjective functions from A to B where A = {1, 2, 3, 4} and B = {a, b} is


Let R = {(x, y) : x, y ∈ N and x2 – 4xy + 3y2 = 0}, where N is the set of all natural numbers. Then the relation R is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×