Advertisements
Advertisements
प्रश्न
determination of whether the following relations are reflexive, symmetric, and transitive:
Relation R in the set Z of all integers defined as
R = {(x, y): x − y is an integer}
उत्तर
Reflexive
R = {(x, y): x − y is an integer}
Now, for every x ∈ Z, (x, x) ∈R as x − x = 0 is an integer.
∴R is reflexive.
Symmetric
Now, for every x, y ∈ Z, if (x, y) ∈ R, then x − y is an integer.
⇒ −(x − y) is also an integer.
⇒ (y − x) is an integer.
∴ (y, x) ∈ R
∴R is symmetric.
Transitive
⇒ (x − y) and (y − z) are integers.
⇒ x − z = (x − y) + (y − z) is an integer.
∴ (x, z) ∈ R
∴ R is transitive.
Hence, R is reflexive, symmetric, and transitive.
APPEARS IN
संबंधित प्रश्न
Check whether the relation R in R defined by R = {(a, b): a ≤ b3} is reflexive, symmetric, or transitive.
Show that the relation R defined in the set A of all polygons as R = {(P1, P2): P1 and P2have same number of sides}, is an equivalence relation. What is the set of all elements in A related to the right angle triangle T with sides 3, 4 and 5?
The binary operation *: R x R → R is defined as a *b = 2a + b Find (2 * 3)*4
Test whether the following relation R2 is (i) reflexive (ii) symmetric and (iii) transitive:
R2 on Z defined by (a, b) ∈ R2 ⇔ |a – b| ≤ 5
The following relation is defined on the set of real numbers.
aRb if 1 + ab > 0
Find whether relation is reflexive, symmetric or transitive.
If A = {1, 2, 3, 4} define relations on A which have properties of being reflexive, symmetric and transitive ?
Let R be a relation defined on the set of natural numbers N as
R = {(x, y) : x, y ∈ N, 2x + y = 41}
Find the domain and range of R. Also, verify whether R is (i) reflexive, (ii) symmetric (iii) transitive.
An integer m is said to be related to another integer n if m is a multiple of n. Check if the relation is symmetric, reflexive and transitive.
Give an example of a relation which is symmetric and transitive but not reflexive?
Defines a relation on N :
x > y, x, y ∈ N
Determine the above relation is reflexive, symmetric and transitive.
Show that the relation R on the set Z of integers, given by
R = {(a, b) : 2 divides a – b}, is an equivalence relation.
Let n be a fixed positive integer. Define a relation R on Z as follows:
(a, b) ∈ R ⇔ a − b is divisible by n.
Show that R is an equivalence relation on Z.
Let Z be the set of integers. Show that the relation
R = {(a, b) : a, b ∈ Z and a + b is even}
is an equivalence relation on Z.
Show that the relation R on the set A = {x ∈ Z ; 0 ≤ x ≤ 12}, given by R = {(a, b) : a = b}, is an equivalence relation. Find the set of all elements related to 1.
Show that the relation R, defined in the set A of all polygons as R = {(P1, P2) : P1 and P2 have same number of sides},
is an equivalence relation. What is the set of all elements in A related to the right-angled triangle T with sides 3, 4 and 5?
If R = {(x, y) : x + 2y = 8} is a relation on N by, then write the range of R.
Let the relation R be defined on N by aRb iff 2a + 3b = 30. Then write R as a set of ordered pairs
The relation R defined on the set A = {1, 2, 3, 4, 5} by
R = {(a, b) : | a2 − b2 | < 16} is given by ______________ .
If A = {a, b, c}, then the relation R = {(b, c)} on A is _______________ .
A relation R is defined from {2, 3, 4, 5} to {3, 6, 7, 10} by : x R y ⇔ x is relatively prime to y. Then, domain of R is ______________ .
If R is the largest equivalence relation on a set A and S is any relation on A, then _____________ .
Show that the relation R on the set Z of integers, given by R = {(a,b):2divides (a - b)} is an equivalence relation.
If f (x) = `(4x + 3)/(6x - 4) , x ≠ 2/3`, show that fof (x) = x for all ` x ≠ 2/3` . Also, find the inverse of f.
If A = {a, b, c}, B = (x , y} find B × B.
Consider the set A = {1, 2, 3} and R be the smallest equivalence relation on A, then R = ______
Consider the set A = {1, 2, 3} and the relation R = {(1, 2), (1, 3)}. R is a transitive relation.
Let T be the set of all triangles in the Euclidean plane, and let a relation R on T be defined as aRb if a is congruent to b ∀ a, b ∈ T. Then R is ______.
Let the relation R be defined on the set A = {1, 2, 3, 4, 5} by R = {(a, b) : |a2 – b2| < 8. Then R is given by ______.
Every relation which is symmetric and transitive is also reflexive.
Let A = {1, 2, 3}, then the domain of the relation R = {(1, 1), (2, 3), (2, 1)} defined on A is ____________.
Let A = {1, 2, 3, 4, 5, 6} Which of the following partitions of A correspond to an equivalence relation on A?
Let us define a relation R in R as aRb if a ≥ b. Then R is ____________.
Let S = {1, 2, 3, 4, 5} and let A = S x S. Define the relation R on A as follows:
(a, b) R (c, d) iff ad = cb. Then, R is ____________.
Let R be the relation “is congruent to” on the set of all triangles in a plane is ____________.
An organization conducted a bike race under 2 different categories-boys and girls. Totally there were 250 participants. Among all of them finally, three from Category 1 and two from Category 2 were selected for the final race. Ravi forms two sets B and G with these participants for his college project. Let B = {b1,b2,b3} G={g1,g2} where B represents the set of boys selected and G the set of girls who were selected for the final race.
Ravi decides to explore these sets for various types of relations and functions.
- Let R: B → B be defined by R = {(x, y): x and y are students of same sex}, Then this relation R is ____________.
The value of k for which the system of equations x + ky + 3z = 0, 4x + 3y + kz = 0, 2x + y + 2z = 0 has nontrivial solution is
A relation in a set 'A' is known as empty relation:-
Define the relation R in the set N × N as follows:
For (a, b), (c, d) ∈ N × N, (a, b) R (c, d) if ad = bc. Prove that R is an equivalence relation in N × N.
If a relation R on the set {a, b, c} defined by R = {(b, b)}, then classify the relation.