Advertisements
Advertisements
प्रश्न
Let the relation R be defined on N by aRb iff 2a + 3b = 30. Then write R as a set of ordered pairs
उत्तर
As, R = {(a, b) : 2a + 3b = 30; a, b ∈ N}
So, R = {(3, 8), (6, 6), (9, 4), (12, 2)}
APPEARS IN
संबंधित प्रश्न
Let N denote the set of all natural numbers and R be the relation on N × N defined by (a, b) R (c, d) if ad (b + c) = bc (a + d). Show that R is an equivalence relation.
determination of whether the following relations are reflexive, symmetric, and transitive:
Relation R in the set Z of all integers defined as
R = {(x, y): x − y is an integer}
Given an example of a relation. Which is Transitive but neither reflexive nor symmetric.
Given an example of a relation. Which is Reflexive and symmetric but not transitive.
Show that the relation R defined in the set A of all polygons as R = {(P1, P2): P1 and P2have same number of sides}, is an equivalence relation. What is the set of all elements in A related to the right angle triangle T with sides 3, 4 and 5?
Let A = {1, 2, 3}. Then number of equivalence relations containing (1, 2) is
(A) 1
(B) 2
(C) 3
(D) 4
Let A = {x ∈ Z : 0 ≤ x ≤ 12}. Show that R = {(a, b) : a, b ∈ A, |a – b| is divisible by 4}is an equivalence relation. Find the set of all elements related to 1. Also write the equivalence class [2]
The binary operation *: R x R → R is defined as a *b = 2a + b Find (2 * 3)*4
Three relations R1, R2 and R3 are defined on a set A = {a, b, c} as follows:
R1 = {(a, a), (a, b), (a, c), (b, b), (b, c), (c, a), (c, b), (c, c)}
R2 = {(a, a)}
R3 = {(b, c)}
R4 = {(a, b), (b, c), (c, a)}.
Find whether or not each of the relations R1, R2, R3, R4 on A is (i) reflexive (ii) symmetric and (iii) transitive.
Let A = {1, 2, 3}, and let R1 = {(1, 1), (1, 3), (3, 1), (2, 2), (2, 1), (3, 3)}, R2 = {(2, 2), (3, 1), (1, 3)}, R3 = {(1, 3), (3, 3)}. Find whether or not each of the relations R1, R2, R3 on A is (i) reflexive (ii) symmetric (iii) transitive.
If A = {1, 2, 3, 4} define relations on A which have properties of being reflexive, transitive but not symmetric ?
Show that the relation '≥' on the set R of all real numbers is reflexive and transitive but not symmetric ?
Defines a relation on N :
xy is square of an integer, x, y ∈ N
Determine the above relation is reflexive, symmetric and transitive.
Show that the relation R on the set Z of integers, given by
R = {(a, b) : 2 divides a – b}, is an equivalence relation.
Let L be the set of all lines in XY-plane and R be the relation in L defined as R = {L1, L2) : L1 is parallel to L2}. Show that R is an equivalence relation. Find the set of all lines related to the line y= 2x + 4.
Write the smallest reflexive relation on set A = {1, 2, 3, 4}.
Let A = {3, 5, 7}, B = {2, 6, 10} and R be a relation from A to B defined by R = {(x, y) : x and y are relatively prime}. Then, write R and R−1.
Let A = {2, 3, 4, 5} and B = {1, 3, 4}. If R is the relation from A to B given by a R b if "a is a divisor of b". Write R as a set of ordered pairs.
If R is a relation on the set A = {1, 2, 3, 4, 5, 6, 7, 8, 9} given by x R y ⇔ y = 3 x, then R = _____________ .
Mark the correct alternative in the following question:
For real numbers x and y, define xRy if `x-y+sqrt2` is an irrational number. Then the relation R is ___________ .
For the matrix A = `[(2,3),(5,7)]`, find (A + A') and verify that it is a symmetric matrix.
If A = {a, b, c}, B = (x , y} find A × B.
If A = {a, b, c}, B = (x , y} find B × A.
If A = {a, b, c}, B = (x , y} find B × B.
Write the relation in the Roster form and hence find its domain and range:
R2 = `{("a", 1/"a") "/" 0 < "a" ≤ 5, "a" ∈ "N"}`
Give an example of a map which is not one-one but onto
The following defines a relation on N:
x y is square of an integer x, y ∈ N
Determine which of the above relations are reflexive, symmetric and transitive.
Let the relation R be defined on the set A = {1, 2, 3, 4, 5} by R = {(a, b) : |a2 – b2| < 8. Then R is given by ______.
The relation R on the set A = {1, 2, 3} defined as R = {{1, 1), (1, 2), (2, 1), (3, 3)} is reflexive, symmetric and transitive.
Let A = {1, 2, 3} and R = {(1, 2), (2, 3), (1, 3)} be a relation on A. Then, R is ____________.
If A is a finite set containing n distinct elements, then the number of relations on A is equal to ____________.
The number of surjective functions from A to B where A = {1, 2, 3, 4} and B = {a, b} is
Let R = {(a, b): a = a2} for all, a, b ∈ N, then R salifies.
Let a set A = A1 ∪ A2 ∪ ... ∪ Ak, where Ai ∩ Aj = Φ for i ≠ j, 1 ≤ i, j ≤ k. Define the relation R from A to A by R = {(x, y): y ∈ Ai if and only if x ∈ Ai, 1 ≤ i ≤ k}. Then, R is ______.
A relation R on (1, 2, 3) is given by R = {(1, 1), (2, 2), (1, 2), (3, 3), (2, 3)}. Then the relation R is ______.