मराठी

Given an Example of a Relation. Which Is Transitive but Neither Reflexive Nor Symmetric. - Mathematics

Advertisements
Advertisements

प्रश्न

Given an example of a relation. Which is Transitive but neither reflexive nor symmetric.

उत्तर

Consider a relation R in defined as:

R = {(ab): a < b}

For any ∈ R, we have (aa) ∉ R since a cannot be strictly less than a itself. In fact, a = a.

∴ R is not reflexive.

Now,

(1, 2) ∈ R (as 1 < 2)

But, 2 is not less than 1.

∴ (2, 1) ∉ R

∴ R is not symmetric.

Now, let (ab), (bc) ∈ R.

⇒ a < b and b < c

⇒ a < c

⇒ (ac) ∈ R

∴R is transitive.

Hence, relation R is transitive but not reflexive and symmetric.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 1: Relations and Functions - Exercise 1.1 [पृष्ठ ६]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 12
पाठ 1 Relations and Functions
Exercise 1.1 | Q 10.2 | पृष्ठ ६

संबंधित प्रश्‍न

Show that the relation R in the set of real numbers, defined as R = {(a, b): a ≤ b2} is neither reflexive nor symmetric nor transitive.


Check whether the relation R in R defined by R = {(a, b): a ≤ b3} is reflexive, symmetric, or transitive.


Given an example of a relation. Which is Reflexive and transitive but not symmetric.


Show that the relation R defined in the set A of all triangles as R = {(T1, T2): T1 is similar to T2}, is equivalence relation. Consider three right angle triangles T1 with sides 3, 4, 5, T2 with sides 5, 12, 13 and T3 with sides 6, 8, and 10. Which triangles among T1, T2 and T3 are related?


Let R be the relation in the set given by R = {(a, b): a = b − 2, b > 6}. Choose the correct answer.


Let A = {1, 2, 3}. Then number of relations containing (1, 2) and (1, 3) which are reflexive and symmetric but not transitive is

(A) 1 (B) 2 (C) 3 (D) 4


Let A = {x ∈ Z : 0 ≤ x ≤ 12}. Show that R = {(ab) : a∈ A, |a – b| is divisible by 4}is an equivalence relation. Find the set of all elements related to 1. Also write the equivalence class [2]


If = {1, 2, 3, 4} define relations on A which have properties of being reflexive, transitive but not symmetric ?


m is said to be related to n if m and n are integers and m − n is divisible by 13. Does this define an equivalence relation?


Show that the relation R, defined in the set A of all polygons as R = {(P1, P2) : P1 and P2 have same number of sides},
is an equivalence relation. What is the set of all elements in A related to the right-angled triangle T with sides 3, 4 and 5?


Write the identity relation on set A = {a, b, c}.


Let A = {0, 1, 2, 3} and R be a relation on A defined as
R = {(0, 0), (0, 1), (0, 3), (1, 0), (1, 1), (2, 2), (3, 0), (3, 3)}
Is R reflexive? symmetric? transitive?


If a relation R is defined on the set Z of integers as follows:
(a, b) ∈ R ⇔ a2 + b2 = 25. Then, domain (R) is ___________


The relation R defined on the set A = {1, 2, 3, 4, 5} by
R = {(a, b) : | a2 − b2 | < 16} is given by ______________ .


R is a relation from {11, 12, 13} to {8, 10, 12} defined by y = x − 3. Then, R−1 is ______________ .


If R is a relation on the set A = {1, 2, 3} given by R = {(1, 1), (2, 2), (3, 3)}, then R is ____________ .


If A = {1, 2, 3}, then a relation R = {(2, 3)} on A is _____________ .


Let A = {1, 2, 3}. Then, the number of equivalence relations containing (1, 2) is ______.


Show that the relation R on the set Z of all integers, given by R = {(a,b) : 2 divides (a-b)} is an equivalence relation.


R = {(a, b) / b = a + 1, a ∈ Z, 0 < a < 5}. Find the Range of R.


Let A = {a, b, c} and the relation R be defined on A as follows:
R = {(a, a), (b, c), (a, b)}.
Then, write minimum number of ordered pairs to be added in R to make R reflexive and transitive


Let the relation R be defined on the set A = {1, 2, 3, 4, 5} by R = {(a, b) : |a2 – b2| < 8. Then R is given by ______.


If A is a finite set containing n distinct elements, then the number of relations on A is equal to ____________.


Let A = {1, 2, 3}, then the domain of the relation R = {(1, 1), (2, 3), (2, 1)} defined on A is ____________.


Let A = {1, 2, 3, 4, 5, 6} Which of the following partitions of A correspond to an equivalence relation on A?


If f(x) = `1 - 1/"x", "then f"("f"(1/"x"))` ____________.


A relation R in set A = {1, 2, 3} is defined as R = {(1, 1), (1, 2), (2, 2), (3, 3)}. Which of the following ordered pair in R shall be removed to make it an equivalence relation in A?


Given set A = {1, 2, 3} and a relation R = {(1, 2), (2, 1)}, the relation R will be ____________.


The value of k for which the system of equations x + ky + 3z = 0, 4x + 3y + kz = 0, 2x + y + 2z = 0 has nontrivial solution is


Which one of the following relations on the set of real numbers R is an equivalence relation?


A relation 'R' in a set 'A' is called reflexive, if


If f(x + 2a) = f(x – 2a), then f(x) is:


Define the relation R in the set N × N as follows:

For (a, b), (c, d) ∈ N × N, (a, b) R (c, d) if ad = bc. Prove that R is an equivalence relation in N × N.


Let a set A = A1 ∪ A2 ∪ ... ∪ Ak, where Ai ∩ Aj = Φ for i ≠ j, 1 ≤ i, j ≤ k. Define the relation R from A to A by R = {(x, y): y ∈ Ai if and only if x ∈ Ai, 1 ≤ i ≤ k}. Then, R is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×