मराठी

Show that the relation R, defined in the set A of all polygons as R = {(P1, P2) : P1 and P2 have same number of sides}, is an equivalence relation. What is the set of all elements in A - Mathematics

Advertisements
Advertisements

प्रश्न

Show that the relation R, defined in the set A of all polygons as R = {(P1, P2) : P1 and P2 have same number of sides},
is an equivalence relation. What is the set of all elements in A related to the right-angled triangle T with sides 3, 4 and 5?

बेरीज

उत्तर

We observe the following properties on R:

Reflexivity: Let P1 be an arbitrary element of A.

Then, polygon P1 and P1 have the same number of sides, since they are one and the same.

⇒ (P1, P1∈ R for all P1∈ A

So, R is reflexive on A.

Symmetry: Let (P1, P2∈ R

⇒ P1 and P2 have the same number of sides.

⇒ P2 and P1 have the same number of sides.

(P2, P1∈ R for all P1, P∈ 

So, R is symmetric on A.

Transitivity: Let (P1, P2), (P2, P3∈ R

⇒ P1 and P2 have the same number of sides and P2 and P3 have the same number of sides.

⇒ P1, P2 and P3 have the same number of sides.

P1 and P3 have the same number of sides.

⇒ (P1, P3R for all P1, P3 A

So, R is transitive on A.

Hence, R is an equivalence relation on the set A.

Also, the set of all the triangles ∈ A is related to the right angle triangle T with the sides 3, 4, and 5.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 1: Relations - Exercise 1.2 [पृष्ठ २७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 1 Relations
Exercise 1.2 | Q 10 | पृष्ठ २७

संबंधित प्रश्‍न

Let A = {x ∈ Z : 0 ≤ x ≤ 12}. Show that R = {(ab) : a∈ A, |a – b| is divisible by 4}is an equivalence relation. Find the set of all elements related to 1. Also write the equivalence class [2]


The following relation is defined on the set of real numbers.  aRb if |a| ≤ b

Find whether relation is reflexive, symmetric or transitive.


Given the relation R = {(1, 2), (2, 3)} on the set A = {1, 2, 3}, add a minimum number of ordered pairs so that the enlarged relation is symmeteric, transitive and reflexive.


Let C be the set of all complex numbers and Cbe the set of all no-zero complex numbers. Let a relation R on Cbe defined as

`z_1 R  z_2  ⇔ (z_1 -z_2)/(z_1 + z_2) ` is real for all z1, z2 ∈ C0 .

Show that R is an equivalence relation.


If R = {(x, y) : x2 + y2 ≤ 4; x, y ∈ Z} is a relation on Z, write the domain of R.


Define a transitive relation ?


Let R be the equivalence relation on the set Z of the integers given by R = { (ab) : 2 divides }.

Write the equivalence class [0].


Let the relation R be defined on N by aRb iff 2a + 3b = 30. Then write R as a set of ordered pairs


A relation R is defined from {2, 3, 4, 5} to {3, 6, 7, 10} by : x R y ⇔ x is relatively prime to y. Then, domain of R is ______________ .


R is a relation from {11, 12, 13} to {8, 10, 12} defined by y = x − 3. Then, R−1 is ______________ .


Show that the relation R on the set Z of integers, given by R = {(a,b):2divides (a - b)} is an equivalence relation. 


If f (x)  = `(4x + 3)/(6x - 4) , x ≠ 2/3`, show that fof (x) = x for all ` x ≠ 2/3` . Also, find the inverse of f.


For the matrix A = `[(2,3),(5,7)]`, find (A + A') and verify that it is a symmetric matrix.


If A = {a, b, c}, B = (x , y} find A × B.


Let A = {1, 2, 3, 4}, B = {4, 5, 6}, C = {5, 6}. Find (A × B) ∪ (A × C).


Let A = {6, 8} and B = {1, 3, 5}.
Let R = {(a, b)/a∈ A, b∈ B, a – b is an even number}. Show that R is an empty relation from A to B.


Let R be a relation on the set N of natural numbers defined by nRm if n divides m. Then R is ______.


Let L denote the set of all straight lines in a plane. Let a relation R be defined by lRm if and only if l is perpendicular to m ∀ l, m ∈ L. Then R is ______.


For real numbers x and y, define xRy if and only if x – y + `sqrt(2)` is an irrational number. Then the relation R is ______.


Consider the set A = {1, 2, 3} and R be the smallest equivalence relation on A, then R = ______


If A = {1, 2, 3, 4 }, define relations on A which have properties of being:
reflexive, transitive but not symmetric


Given A = {2, 3, 4}, B = {2, 5, 6, 7}. Construct an example of the following:
a mapping from A to B which is not injective


The following defines a relation on N:
x y is square of an integer x, y ∈ N
Determine which of the above relations are reflexive, symmetric and transitive.


Consider the non-empty set consisting of children in a family and a relation R defined as aRb if a is brother of b. Then R is ______.


Let us define a relation R in R as aRb if a ≥ b. Then R is ______.


Let the relation R be defined in N by aRb if 2a + 3b = 30. Then R = ______.


If A is a finite set containing n distinct elements, then the number of relations on A is equal to ____________.


If f(x) = `1 - 1/"x", "then f"("f"(1/"x"))` ____________.


A general election of Lok Sabha is a gigantic exercise. About 911 million people were eligible to vote and voter turnout was about 67%, the highest ever


Let I be the set of all citizens of India who were eligible to exercise their voting right in the general election held in 2019. A relation ‘R’ is defined on I as follows:

R = {(V1, V2) ∶ V1, V2 ∈ I and both use their voting right in the general election - 2019}

  • Mr. Shyam exercised his voting right in General Election-2019, then Mr. Shyam is related to which of the following?

Sherlin and Danju are playing Ludo at home during Covid-19. While rolling the dice, Sherlin’s sister Raji observed and noted the possible outcomes of the throw every time belongs to set {1,2,3,4,5,6}. Let A be the set of players while B be the set of all possible outcomes.

A = {S, D}, B = {1,2,3,4,5,6}

  • Let R be a relation on B defined by R = {(1,2), (2,2), (1,3), (3,4), (3,1), (4,3), (5,5)}. Then R is:

Sherlin and Danju are playing Ludo at home during Covid-19. While rolling the dice, Sherlin’s sister Raji observed and noted the possible outcomes of the throw every time belongs to set {1,2,3,4,5,6}. Let A be the set of players while B be the set of all possible outcomes.

A = {S, D}, B = {1,2,3,4,5,6}

  • Raji wants to know the number of relations possible from A to B. How many numbers of relations are possible?

Find: `int (x + 1)/((x^2 + 1)x) dx`


On the set N of all natural numbers, define the relation R by a R b, if GCD of a and b is 2. Then, R is


In a group of 52 persons, 16 drink tea but not coffee, while 33 drink tea. How many persons drink coffee but not tea?


A relation 'R' in a set 'A' is called reflexive, if


Read the following passage:

An organization conducted bike race under two different categories – Boys and Girls. There were 28 participants in all. Among all of them, finally three from category 1 and two from category 2 were selected for the final race. Ravi forms two sets B and G with these participants for his college project.
Let B = {b1, b2, b3} and G = {g1, g2}, where B represents the set of Boys selected and G the set of Girls selected for the final race.

Based on the above information, answer the following questions:

  1. How many relations are possible from B to G? (1)
  2. Among all the possible relations from B to G, how many functions can be formed from B to G? (1)
  3. Let R : B `rightarrow` B be defined by R = {(x, y) : x and y are students of the same sex}. Check if R is an equivalence relation. (2)
    OR
    A function f : B `rightarrow` G be defined by f = {(b1, g1), (b2, g2), (b3, g1)}. Check if f is bijective. Justify your answer. (2)

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×