Advertisements
Advertisements
प्रश्न
Let us define a relation R in R as aRb if a ≥ b. Then R is ______.
पर्याय
An equivalence relation
Reflexive, transitive but not symmetric
Symmetric, transitive but not reflexive
Neither transitive nor reflexive but symmetric
उत्तर
Let us define a relation R in R as aRb if a ≥ b. Then R is reflexive, transitive but not symmetric.
Explanation:
Given that, aRb if a ≥ b
⇒ aRa
⇒ a ≥ a which is true.
Let aRb, a ≥ b, then b ≥ a which i not true,
So R is not symmetric.
But aRb and bRc
⇒ a ≥ b and b ≥ c
⇒ a ≥ c
Hence, R is transitive.
APPEARS IN
संबंधित प्रश्न
Let A = {1, 2, 3,......, 9} and R be the relation in A × A defined by (a, b) R (c, d) if a + d = b + c for (a, b), (c, d) in A × A. Prove that R is an equivalence relation. Also, obtain the equivalence class [(2, 5)].
If R=[(x, y) : x+2y=8] is a relation on N, write the range of R.
Show that the relation R in the set R of real numbers, defined as R = {(a, b): a ≤ b2} is neither reflexive nor symmetric nor transitive.
Show that each of the relation R in the set A= {x ∈ Z : 0 ≤ x ≤ = 12} given by R = {(a, b) : |a - b| is a multiple of 4} is an equivalence relation. Find the set of all elements related to 1 in each case.
Let A = {1, 2, 3}. Then number of equivalence relations containing (1, 2) is
(A) 1
(B) 2
(C) 3
(D) 4
Let A be the set of all human beings in a town at a particular time. Determine whether of the following relation is reflexive, symmetric and transitive:
R = {(x, y) : x is wife of y}
Test whether the following relation R1 is (i) reflexive (ii) symmetric and (iii) transitive :
R1 on Q0 defined by (a, b) ∈ R1 ⇔ a = 1/b.
Prove that every identity relation on a set is reflexive, but the converse is not necessarily true.
Is it true that every relation which is symmetric and transitive is also reflexive? Give reasons.
Defines a relation on N :
x > y, x, y ∈ N
Determine the above relation is reflexive, symmetric and transitive.
Let O be the origin. We define a relation between two points P and Q in a plane if OP = OQ. Show that the relation, so defined is an equivalence relation.
If R and S are transitive relations on a set A, then prove that R ∪ S may not be a transitive relation on A.
Define an equivalence relation ?
R is a relation on the set Z of integers and it is given by
(x, y) ∈ R ⇔ | x − y | ≤ 1. Then, R is ______________ .
If A = {a, b, c}, then the relation R = {(b, c)} on A is _______________ .
Let A = {2, 3, 4, 5, ..., 17, 18}. Let '≃' be the equivalence relation on A × A, cartesian product of Awith itself, defined by (a, b) ≃ (c, d) if ad = bc. Then, the number of ordered pairs of the equivalence class of (3, 2) is _______________ .
The relation 'R' in N × N such that
(a, b) R (c, d) ⇔ a + d = b + c is ______________ .
A relation R is defined from {2, 3, 4, 5} to {3, 6, 7, 10} by : x R y ⇔ x is relatively prime to y. Then, domain of R is ______________ .
Consider the set A = {1, 2, 3} and R be the smallest equivalence relation on A, then R = ______
Given A = {2, 3, 4}, B = {2, 5, 6, 7}. Construct an example of the following:
a mapping from A to B which is not injective
Let A = {1, 2, 3} and R = {(1, 2), (2, 3), (1, 3)} be a relation on A. Then, R is ____________.
If A is a finite set containing n distinct elements, then the number of relations on A is equal to ____________.
Let R be a relation on the set N of natural numbers denoted by nRm ⇔ n is a factor of m (i.e. n | m). Then, R is ____________.
Given triangles with sides T1: 3, 4, 5; T2: 5, 12, 13; T3: 6, 8, 10; T4: 4, 7, 9 and a relation R inset of triangles defined as R = `{(Delta_1, Delta_2) : Delta_1 "is similar to" Delta_2}`. Which triangles belong to the same equivalence class?
The relation R = {(1,1),(2,2),(3,3)} on {1,2,3} is ____________.
In a group of 52 persons, 16 drink tea but not coffee, while 33 drink tea. How many persons drink coffee but not tea?
There are 600 student in a school. If 400 of them can speak Telugu, 300 can speak Hindi, then the number of students who can speak both Telugu and Hindi is:
Let R = {(a, b): a = a2} for all, a, b ∈ N, then R salifies.
Given a non-empty set X, define the relation R in P(X) as follows:
For A, B ∈ P(X), (4, B) ∈ R iff A ⊂ B. Prove that R is reflexive, transitive and not symmetric.