मराठी

Let A = {1, 2, 3,......, 9} and R be the relation in A × A defined by (a, b) R (c, d) if a + d = b + c for (a, b), (c, d) in A × A. Prove that R is an equivalence relation. Also, obtain the equivalence class [(2, 5)]. - Mathematics

Advertisements
Advertisements

प्रश्न

Let A = {1, 2, 3,......, 9} and R be the relation in A × A defined by (a, b) R (c, d) if a + d = b + c for (a, b), (c, d) in A × A. Prove that R is an equivalence relation. Also, obtain the equivalence class [(2, 5)].

उत्तर

A = {1, 2, 3, ..., 9} ⊂ ℕ, the set of natural numbers
Let R be the relation in A × A defined by (a, b) R (c, d) if a + d = b + c for (a, b), (c, d) in A × A.
We have to show that R is an equivalence relation.

Reflexivity:
Let (a, b) be an arbitrary element of A × A. Then, we have:
(a, b) ∈ A × A
a, b ∈ A
a + b = b + a    (by commutativity of addition on A ⊂ ℕ)
⇒ (a, b) R (a, b)

Thus, (a, b) R (a, b) for all (a, b) ∈ A × A.
So, R is reflexive.


Symmetry:
Let (a, b), (c, d) ∈ A × A such that (a, b) R (c, d).

a + d = b + c
b + c = a + d
c + b = d + a    (by commutativity of addition on A ⊂ ℕ)
⇒ (c, d) R (a, b)

Thus, (a, b) R (c, d) ⇒ (c, d) R (a, b) for all (a, b), (c, d) ∈ A × A.
So, R is symmetric

Transitivity:
Let (a, b), (c, d), (e, f) ∈ A × A such that (a, b) R (c, d) and (c, d) R (e, f). Then, we have:

(a, b) R (c, d)
a + d = b + c                      ... (1)

(c, d) R (e, f)
c + f = d + e                       ... (2)

Adding equations (1) and (2), we get:

(a + d) + (c + f) = (b + c) + (d + e)
a + f = b + e
⇒ (a, b) R (e, f)

Thus, (a, b) R (c, d) and (c, d) R (e, f) ⇒ (a, b) R (e, f) for all (a, b), (c, d), (e, f) ∈ A × A.
So, R is transitive on A × A.
Thus, R is reflexive, symmetric and transitive.
∴ R is an equivalence relation.

To write the equivalence class of [(2, 5)], we need to search all the elements of the type (a, b) such that 2 + b = 5 + a.

∴ Equivalence class of [(2, 5)] = {(1, 4), (2, 5), (3, 6), (4, 7), (5, 8), (6, 9)}

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
2013-2014 (March) Delhi Set 1

संबंधित प्रश्‍न

Check whether the relation R defined in the set {1, 2, 3, 4, 5, 6} as R = {(a, b): b = a + 1} is reflexive, symmetric, or transitive.


Show that the relation R in the set A of points in a plane given by R = {(P, Q): distance of the point P from the origin is same as the distance of the point Q from the origin}, is an equivalence relation. Further, show that the set of all points related to a point P ≠ (0, 0) is the circle passing through P with origin as centre.


Let A = {1, 2, 3}. Then number of equivalence relations containing (1, 2) is

(A) 1

(B) 2

(C) 3

(D) 4


The following relation is defined on the set of real numbers.
aRb if a – b > 0

Find whether relation is reflexive, symmetric or transitive.


Prove that every identity relation on a set is reflexive, but the converse is not necessarily true.


An integer m is said to be related to another integer n if m is a multiple of n. Check if the relation is symmetric, reflexive and transitive.


Give an example of a relation which is reflexive and transitive but not symmetric ?


Give an example of a relation which is symmetric but neither reflexive nor transitive?


Defines a relation on :

x + y = 10, xy∈ N

Determine the above relation is reflexive, symmetric and transitive.


Defines a relation on N :

xy is square of an integer, x, y ∈ N

Determine the above relation is reflexive, symmetric and transitive.


If A = {2, 3, 4}, B = {1, 3, 7} and R = {(x, y) : x ∈ A, y ∈ B and x < y} is a relation from A to B, then write R−1.


Define a reflexive relation ?


Let R = {(a, a3) : a is a prime number less than 5} be a relation. Find the range of R.


If A = {1, 2, 3}, B = {1, 4, 6, 9} and R is a relation from A to B defined by 'x is greater than y'. The range of R is ______________ .


Mark the correct alternative in the following question:

The relation S defined on the set R of all real number by the rule aSb if a  b is _______________ .


Mark the correct alternative in the following question:

Let L denote the set of all straight lines in a plane. Let a relation R be defined by lRm if l is perpendicular to m for all l, m  L. Then, R is ______________ .


Mark the correct alternative in the following question:

Consider a non-empty set consisting of children in a family and a relation R defined as aRb if a is brother of b. Then, R is _____________ .


Let A = {1, 2, 3, 4}, B = {4, 5, 6}, C = {5, 6}. Find (A × B) ∪ (A × C).


The following defines a relation on N:
x is greater than y, x, y ∈ N
Determine which of the above relations are reflexive, symmetric and transitive.


Let T be the set of all triangles in the Euclidean plane, and let a relation R on T be defined as aRb if a is congruent to b ∀ a, b ∈ T. Then R is ______.


Let us define a relation R in R as aRb if a ≥ b. Then R is ______.


Every relation which is symmetric and transitive is also reflexive.


The relation R on the set A = {1, 2, 3} defined as R = {{1, 1), (1, 2), (2, 1), (3, 3)} is reflexive, symmetric and transitive.


Let A = {1, 2, 3}. Which of the following is not an equivalence relation on A?


Let A = {1, 2, 3} and R = {(1, 2), (2, 3), (1, 3)} be a relation on A. Then, R is ____________.


Students of Grade 9, planned to plant saplings along straight lines, parallel to each other to one side of the playground ensuring that they had enough play area. Let us assume that they planted one of the rows of the saplings along the line y = x − 4. Let L be the set of all lines which are parallel on the ground and R be a relation on L.

Answer the following using the above information.

  • Let relation R be defined by R = {(L1, L2): L1║L2 where L1, L2 ∈ L} then R is ____________ relation.

Find: `int (x + 1)/((x^2 + 1)x) dx`


In a group of 52 persons, 16 drink tea but not coffee, while 33 drink tea. How many persons drink coffee but not tea?


lf A = {x ∈ z+ : x < 10 and x is a multiple of 3 or 4}, where z+ is the set of positive integers, then the total number of symmetric relations on A is ______.


Let L be a set of all straight lines in a plane. The relation R on L defined as 'perpendicular to' is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×