Advertisements
Advertisements
प्रश्न
Let L be a set of all straight lines in a plane. The relation R on L defined as 'perpendicular to' is ______.
पर्याय
Symmetric and Transitive
Transitive
Symmetric
Equivalence
उत्तर
Let L be a set of all straight lines in a plane. The relation R on L defined as 'perpendicular to' is symmetric.
Explanation:
The relation is symmetric, meaning that if a line (I) is perpendicular to line (m), then line (m) is also perpendicular to line I.
However, if line (l) is perpendicular to line (m) and line (m) is perpendicular to line (n).
Then, lines 'I' and 'n' are parallel rather than perpendicular, but is parallel.
As a result, the provided relation is only symmetric.
APPEARS IN
संबंधित प्रश्न
determination of whether the following relations are reflexive, symmetric, and transitive:
Relation R in the set N of natural numbers defined as
R = {(x, y): y = x + 5 and x < 4}
determination of whether the following relations are reflexive, symmetric, and transitive:
Relation R in the set A = {1, 2, 3, 4, 5, 6} as R = {(x, y): y is divisible by x}
determination of whether the following relations are reflexive, symmetric, and transitive:
Relation R in the set A of human beings in a town at a particular time given by (c) R = {(x, y): x is exactly 7 cm taller than y}
Show that the relation R in the set A of all the books in a library of a college, given by R = {(x, y): x and y have same number of pages} is an equivalence relation.
Show that each of the relation R in the set A= {x ∈ Z : 0 ≤ x ≤ = 12} given by R = {(a, b) : |a - b| is a multiple of 4} is an equivalence relation. Find the set of all elements related to 1 in each case.
The binary operation *: R x R → R is defined as a *b = 2a + b Find (2 * 3)*4
The following relation is defined on the set of real numbers.
aRb if a – b > 0
Find whether relation is reflexive, symmetric or transitive.
If A = {1, 2, 3, 4} define relations on A which have properties of being reflexive, symmetric and transitive ?
Give an example of a relation which is reflexive and transitive but not symmetric ?
Let A = {1, 2, 3} and R = {(1, 2), (1, 1), (2, 3)} be a relation on A. What minimum number of ordered pairs may be added to R so that it may become a transitive relation on A.
m is said to be related to n if m and n are integers and m − n is divisible by 13. Does this define an equivalence relation?
Show that the relation R on the set A = {x ∈ Z ; 0 ≤ x ≤ 12}, given by R = {(a, b) : a = b}, is an equivalence relation. Find the set of all elements related to 1.
If R = {(x, y) : x2 + y2 ≤ 4; x, y ∈ Z} is a relation on Z, write the domain of R.
If A = {3, 5, 7} and B = {2, 4, 9} and R is a relation given by "is less than", write R as a set ordered pairs.
Let R = {(a, a3) : a is a prime number less than 5} be a relation. Find the range of R.
If A = {1, 2, 3}, B = {1, 4, 6, 9} and R is a relation from A to B defined by 'x is greater than y'. The range of R is ______________ .
If R is a relation on the set A = {1, 2, 3} given by R = {(1, 1), (2, 2), (3, 3)}, then R is ____________ .
Let A = {1, 2, 3}. Then, the number of equivalence relations containing (1, 2) is ______.
Let A = {6, 8} and B = {1, 3, 5}.
Let R = {(a, b)/a∈ A, b∈ B, a – b is an even number}. Show that R is an empty relation from A to B.
Let R be a relation on the set N of natural numbers defined by nRm if n divides m. Then R is ______.
Let n be a fixed positive integer. Define a relation R in Z as follows: ∀ a, b ∈ Z, aRb if and only if a – b is divisible by n. Show that R is an equivalance relation
Give an example of a map which is neither one-one nor onto
Let A = {1, 2, 3, ... 9} and R be the relation in A × A defined by (a, b) R(c, d) if a + d = b + c for (a, b), (c, d) in A × A. Prove that R is an equivalence relation and also obtain the equivalent class [(2, 5)]
Let R = {(3, 1), (1, 3), (3, 3)} be a relation defined on the set A = {1, 2, 3}. Then R is symmetric, transitive but not reflexive.
The relation R on the set A = {1, 2, 3} defined as R = {{1, 1), (1, 2), (2, 1), (3, 3)} is reflexive, symmetric and transitive.
R = {(1, 1), (2, 2), (1, 2), (2, 1), (2, 3)} be a relation on A, then R is ____________.
An organization conducted a bike race under 2 different categories-boys and girls. Totally there were 250 participants. Among all of them finally, three from Category 1 and two from Category 2 were selected for the final race. Ravi forms two sets B and G with these participants for his college project. Let B = {b1,b2,b3} G={g1,g2} where B represents the set of boys selected and G the set of girls who were selected for the final race.
Ravi decides to explore these sets for various types of relations and functions.
- Let R: B → B be defined by R = {(x, y): x and y are students of same sex}, Then this relation R is ____________.
Let N be the set of all natural numbers and R be a relation on N × N defined by (a, b) R (c, d) `⇔` ad = bc for all (a, b), (c, d) ∈ N × N. Show that R is an equivalence relation on N × N. Also, find the equivalence class of (2, 6), i.e., [(2, 6)].