English

Let L be a set of all straight lines in a plane. The relation R on L defined as 'perpendicular to' is ______. - Mathematics

Advertisements
Advertisements

Question

Let L be a set of all straight lines in a plane. The relation R on L defined as 'perpendicular to' is ______.

Options

  • Symmetric and Transitive

  • Transitive

  • Symmetric

  • Equivalence

MCQ
Fill in the Blanks

Solution

Let L be a set of all straight lines in a plane. The relation R on L defined as 'perpendicular to' is symmetric.

Explanation:

The relation is symmetric, meaning that if a line (I) is perpendicular to line (m), then line (m) is also perpendicular to line I.

However, if line (l) is perpendicular to line (m) and line (m) is perpendicular to line (n).

Then, lines 'I' and 'n' are parallel rather than perpendicular, but is parallel.

As a result, the provided relation is only symmetric.

shaalaa.com
  Is there an error in this question or solution?
2023-2024 (February) Official

RELATED QUESTIONS

Let A = {1, 2, 3,......, 9} and R be the relation in A × A defined by (a, b) R (c, d) if a + d = b + c for (a, b), (c, d) in A × A. Prove that R is an equivalence relation. Also, obtain the equivalence class [(2, 5)].


determination of whether the following relations are reflexive, symmetric, and transitive:

Relation R in the set A of human beings in a town at a particular time given by (c) R = {(x, y): x is exactly 7 cm taller than y}


Check whether the relation R defined in the set {1, 2, 3, 4, 5, 6} as R = {(a, b): b = a + 1} is reflexive, symmetric, or transitive.


Let A = {x ∈ Z : 0 ≤ x ≤ 12}. Show that R = {(ab) : a∈ A, |a – b| is divisible by 4}is an equivalence relation. Find the set of all elements related to 1. Also write the equivalence class [2]


Let A be the set of all human beings in a town at a particular time. Determine whether of the following relation is reflexive, symmetric and transitive:

R = {(x, y) : x is wife of y}


Defines a relation on N :

xy is square of an integer, x, y ∈ N

Determine the above relation is reflexive, symmetric and transitive.


Show that the relation R defined by R = {(a, b) : a – b is divisible by 3; a, b ∈ Z} is an equivalence relation.


Prove that the relation R on Z defined by
(a, b) ∈ R ⇔ a − b is divisible by 5
is an equivalence relation on Z.


m is said to be related to n if m and n are integers and m − n is divisible by 13. Does this define an equivalence relation?


Let R be the relation defined on the set A = {1, 2, 3, 4, 5, 6, 7} by R = {(a, b) : both a and b are either odd or even}. Show that R is an equivalence relation. Further, show that all the elements of the subset {1, 3, 5, 7} are related to each other and all the elements of the subset {2, 4, 6} are related to each other, but no element of the subset {1, 3, 5, 7} is related to any element of the subset {2, 4, 6}.


If R and S are relations on a set A, then prove that R and S are symmetric ⇒ R ∩ S and R ∪ S are symmetric ?


Let C be the set of all complex numbers and Cbe the set of all no-zero complex numbers. Let a relation R on Cbe defined as

`z_1 R  z_2  ⇔ (z_1 -z_2)/(z_1 + z_2) ` is real for all z1, z2 ∈ C0 .

Show that R is an equivalence relation.


Let A = {3, 5, 7}, B = {2, 6, 10} and R be a relation from A to B defined by R = {(x, y) : x and y are relatively prime}. Then, write R and R−1.


Define a symmetric relation ?


Write the smallest equivalence relation on the set A = {1, 2, 3} ?


If a relation R is defined on the set Z of integers as follows:
(a, b) ∈ R ⇔ a2 + b2 = 25. Then, domain (R) is ___________


Let R = {(a, a), (b, b), (c, c), (a, b)} be a relation on set A = a, b, c. Then, R is _______________ .


Mark the correct alternative in the following question:

For real numbers x and y, define xRy if `x-y+sqrt2` is an irrational number. Then the relation R is ___________ .


If A = {a, b, c}, B = (x , y} find B × A.


Let R be a relation on the set N of natural numbers defined by nRm if n divides m. Then R is ______.


Consider the set A = {1, 2, 3} and the relation R = {(1, 2), (1, 3)}. R is a transitive relation.


The following defines a relation on N:
x is greater than y, x, y ∈ N
Determine which of the above relations are reflexive, symmetric and transitive.


The maximum number of equivalence relations on the set A = {1, 2, 3} are ______.


Let A = { 2, 3, 6 } Which of the following relations on A are reflexive?


Let us define a relation R in R as aRb if a ≥ b. Then R is ____________.


A relation S in the set of real numbers is defined as `"xSy" => "x" - "y" + sqrt3`  is an irrational number, then relation S is ____________.


An organization conducted a bike race under 2 different categories-boys and girls. Totally there were 250 participants. Among all of them finally, three from Category 1 and two from Category 2 were selected for the final race. Ravi forms two sets B and G with these participants for his college project. Let B = {b1,b2,b3} G={g1,g2} where B represents the set of boys selected and G the set of girls who were selected for the final race.

Ravi decides to explore these sets for various types of relations and functions.

  • Ravi wishes to form all the relations possible from B to G. How many such relations are possible?

In a group of 52 persons, 16 drink tea but not coffee, while 33 drink tea. How many persons drink coffee but not tea?


Let R = {(x, y) : x, y ∈ N and x2 – 4xy + 3y2 = 0}, where N is the set of all natural numbers. Then the relation R is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×