Advertisements
Advertisements
Questions
Let A be the set of all human beings in a town at a particular time. Determine whether of the following relation is reflexive, symmetric and transitive:
R = {(x, y) : x is wife of y}
determination of whether the following relations are reflexive, symmetric, and transitive:
Relation R in the set A of human beings in a town at a particular time given by R = {(x, y) : x is wife of y}
Solution
(i) Reflexivity:
Let x be an element of R. Then,
x is wife of x cannot be true.
⇒(x, x)∉R
So, R is not a reflexive relation.
(ii) Symmetric:
Let (x, y)∈R
⇒ x is wife of y
⇒ x is female and y is male
⇒ y cannot be wife of x as y is husband of x
⇒(y, x)∉R
So, R is not a symmetric relation.
(iii) Transitivity:
⇒ If x is the wife of y, then y is not the wife of z.
⇒ If (x, y) ∈ R and (y, z) ∉ R, then (x, z) ∉ R.
⇒ So R is transitive.
Hence, R is neither reflexive nor symmetric but transitive.
APPEARS IN
RELATED QUESTIONS
If R=[(x, y) : x+2y=8] is a relation on N, write the range of R.
Given an example of a relation. Which is Symmetric but neither reflexive nor transitive.
Given an example of a relation. Which is Reflexive and symmetric but not transitive.
Let A = {x ∈ Z : 0 ≤ x ≤ 12}. Show that R = {(a, b) : a, b ∈ A, |a – b| is divisible by 4}is an equivalence relation. Find the set of all elements related to 1. Also write the equivalence class [2]
Test whether the following relation R3 is (i) reflexive (ii) symmetric and (iii) transitive:
R3 on R is defined by (a, b) ∈ R3 `⇔` a2 – 4ab + 3b2 = 0.
If A = {1, 2, 3, 4} define relations on A which have properties of being symmetric but neither reflexive nor transitive ?
Let R be a relation defined on the set of natural numbers N as
R = {(x, y) : x, y ∈ N, 2x + y = 41}
Find the domain and range of R. Also, verify whether R is (i) reflexive, (ii) symmetric (iii) transitive.
An integer m is said to be related to another integer n if m is a multiple of n. Check if the relation is symmetric, reflexive and transitive.
Show that the relation '≥' on the set R of all real numbers is reflexive and transitive but not symmetric ?
Give an example of a relation which is transitive but neither reflexive nor symmetric?
Show that the relation R on the set Z of integers, given by
R = {(a, b) : 2 divides a – b}, is an equivalence relation.
m is said to be related to n if m and n are integers and m − n is divisible by 13. Does this define an equivalence relation?
Let R be a relation on the set A of ordered pair of integers defined by (x, y) R (u, v) if xv = yu. Show that R is an equivalence relation.
Let L be the set of all lines in XY-plane and R be the relation in L defined as R = {L1, L2) : L1 is parallel to L2}. Show that R is an equivalence relation. Find the set of all lines related to the line y= 2x + 4.
Let S be a relation on the set R of all real numbers defined by
S = {(a, b) ∈ R × R : a2 + b2 = 1}
Prove that S is not an equivalence relation on R.
If R and S are relations on a set A, then prove that R is reflexive and S is any relation ⇒ R ∪ S is reflexive ?
Define a reflexive relation ?
State the reason for the relation R on the set {1, 2, 3} given by R = {(1, 2), (2, 1)} to be transitive ?
A relation ϕ from C to R is defined by x ϕ y ⇔ | x | = y. Which one is correct?
If R is the largest equivalence relation on a set A and S is any relation on A, then _____________ .
If R is a relation on the set A = {1, 2, 3} given by R = {(1, 1), (2, 2), (3, 3)}, then R is ____________ .
Mark the correct alternative in the following question:
Let L denote the set of all straight lines in a plane. Let a relation R be defined by lRm if l is perpendicular to m for all l, m ∈ L. Then, R is ______________ .
Mark the correct alternative in the following question:
For real numbers x and y, define xRy if `x-y+sqrt2` is an irrational number. Then the relation R is ___________ .
Show that the relation R defined by (a, b)R(c,d) ⇒ a + d = b + c on the A x A , where A = {1, 2,3,...,10} is an equivalence relation. Hence write the equivalence class [(3, 4)]; a, b, c,d ∈ A.
Let A = {1, 2, 3, 4}, B = {4, 5, 6}, C = {5, 6}. Find A × (B ∩ C).
Consider the set A = {1, 2, 3} and the relation R = {(1, 2), (1, 3)}. R is a transitive relation.
The following defines a relation on N:
x y is square of an integer x, y ∈ N
Determine which of the above relations are reflexive, symmetric and transitive.
Consider the non-empty set consisting of children in a family and a relation R defined as aRb if a is brother of b. Then R is ______.
Let A = {1, 2, 3}. Which of the following is not an equivalence relation on A?
Let A = {1, 2, 3}, then the domain of the relation R = {(1, 1), (2, 3), (2, 1)} defined on A is ____________.
A relation R on a non – empty set A is an equivalence relation if it is ____________.
If f(x) = `1 - 1/"x", "then f"("f"(1/"x"))` ____________.
Let us define a relation R in R as aRb if a ≥ b. Then R is ____________.
Let S = {1, 2, 3, 4, 5} and let A = S x S. Define the relation R on A as follows:
(a, b) R (c, d) iff ad = cb. Then, R is ____________.
In a group of 52 persons, 16 drink tea but not coffee, while 33 drink tea. How many persons drink coffee but not tea?
The number of surjective functions from A to B where A = {1, 2, 3, 4} and B = {a, b} is
A relation 'R' in a set 'A' is called a universal relation, if each element of' A' is related to :-