Advertisements
Advertisements
Question
A relation ϕ from C to R is defined by x ϕ y ⇔ | x | = y. Which one is correct?
Options
(2 + 3 i) ϕ 13
3 ϕ (−3)
(1 + i) ϕ 2
i ϕ 1
Solution
i ϕ 1
∵ `| 2 +3 | = sqrt13 ≠ 13`
|3| ≠ -3
`| 1+ i| = sqrt2 ≠2`
and | i |=1
So, (i, 1) ∈ ϕ
APPEARS IN
RELATED QUESTIONS
Let N denote the set of all natural numbers and R be the relation on N × N defined by (a, b) R (c, d) if ad (b + c) = bc (a + d). Show that R is an equivalence relation.
Show that the relation R in R defined as R = {(a, b): a ≤ b}, is reflexive and transitive but not symmetric.
Show that the relation R in the set A = {1, 2, 3, 4, 5} given by R = {(a, b) : |a - b| is even}, is an equivalence relation. Show that all the elements of {1, 3, 5} are related to each other and all the elements of {2, 4} are related to each other. But no element of {1, 3, 5} is related to any element of {2, 4}.
The binary operation *: R x R → R is defined as a *b = 2a + b Find (2 * 3)*4
If A = {1, 2, 3, 4} define relations on A which have properties of being symmetric but neither reflexive nor transitive ?
Let R be a relation defined on the set of natural numbers N as
R = {(x, y) : x, y ∈ N, 2x + y = 41}
Find the domain and range of R. Also, verify whether R is (i) reflexive, (ii) symmetric (iii) transitive.
Defines a relation on N :
xy is square of an integer, x, y ∈ N
Determine the above relation is reflexive, symmetric and transitive.
Defines a relation on N:
x + 4y = 10, x, y ∈ N
Determine the above relation is reflexive, symmetric and transitive.
Let Z be the set of integers. Show that the relation
R = {(a, b) : a, b ∈ Z and a + b is even}
is an equivalence relation on Z.
m is said to be related to n if m and n are integers and m − n is divisible by 13. Does this define an equivalence relation?
Show that the relation R on the set A = {x ∈ Z ; 0 ≤ x ≤ 12}, given by R = {(a, b) : a = b}, is an equivalence relation. Find the set of all elements related to 1.
Let R be the relation defined on the set A = {1, 2, 3, 4, 5, 6, 7} by R = {(a, b) : both a and b are either odd or even}. Show that R is an equivalence relation. Further, show that all the elements of the subset {1, 3, 5, 7} are related to each other and all the elements of the subset {2, 4, 6} are related to each other, but no element of the subset {1, 3, 5, 7} is related to any element of the subset {2, 4, 6}.
If R and S are relations on a set A, then prove that R is reflexive and S is any relation ⇒ R ∪ S is reflexive ?
If R = {(x, y) : x2 + y2 ≤ 4; x, y ∈ Z} is a relation on Z, write the domain of R.
If R = {(x, y) : x + 2y = 8} is a relation on N by, then write the range of R.
A = {1, 2, 3, 4, 5, 6, 7, 8} and if R = {(x, y) : y is one half of x; x, y ∈ A} is a relation on A, then write R as a set of ordered pairs.
For the set A = {1, 2, 3}, define a relation R on the set A as follows:
R = {(1, 1), (2, 2), (3, 3), (1, 3)}
Write the ordered pairs to be added to R to make the smallest equivalence relation.
If a relation R is defined on the set Z of integers as follows:
(a, b) ∈ R ⇔ a2 + b2 = 25. Then, domain (R) is ___________
The relation R = {(1, 1), (2, 2), (3, 3)} on the set {1, 2, 3} is ___________________ .
Show that the relation R on R defined as R = {(a, b): a ≤ b}, is reflexive, and transitive but not symmetric.
Show that the relation R defined by (a, b)R(c,d) ⇒ a + d = b + c on the A x A , where A = {1, 2,3,...,10} is an equivalence relation. Hence write the equivalence class [(3, 4)]; a, b, c,d ∈ A.
For the matrix A = `[(2,3),(5,7)]`, find (A + A') and verify that it is a symmetric matrix.
If A = {a, b, c}, B = (x , y} find A × B.
Let A = {1, 2, 3, 4}, B = {4, 5, 6}, C = {5, 6}. Find A × (B ∪ C).
Let A = {1, 2, 3, 4}, B = {4, 5, 6}, C = {5, 6}. Find (A × B) ∪ (A × C).
R = {(a, b) / b = a + 1, a ∈ Z, 0 < a < 5}. Find the Range of R.
Let n be a fixed positive integer. Define a relation R in Z as follows: ∀ a, b ∈ Z, aRb if and only if a – b is divisible by n. Show that R is an equivalance relation
Given A = {2, 3, 4}, B = {2, 5, 6, 7}. Construct an example of the following:
a mapping from A to B which is not injective
Give an example of a map which is neither one-one nor onto
Let us define a relation R in R as aRb if a ≥ b. Then R is ______.
Let the relation R be defined on the set A = {1, 2, 3, 4, 5} by R = {(a, b) : |a2 – b2| < 8. Then R is given by ______.
Let R be the relation on N defined as by x + 2 y = 8 The domain of R is ____________.
Let A = {1, 2, 3}. Which of the following is not an equivalence relation on A?
Let A = {1, 2, 3, 4, 5, 6} Which of the following partitions of A correspond to an equivalence relation on A?
Let A = {1, 2, 3} and consider the relation R = {(1, 1), (2, 2), (3, 3), (1, 2), (2, 3), (1, 3)}. Then R is ____________.
Given set A = {1, 2, 3} and a relation R = {(1, 2), (2, 1)}, the relation R will be ____________.
Sherlin and Danju are playing Ludo at home during Covid-19. While rolling the dice, Sherlin’s sister Raji observed and noted the possible outcomes of the throw every time belongs to set {1,2,3,4,5,6}. Let A be the set of players while B be the set of all possible outcomes.
A = {S, D}, B = {1,2,3,4,5,6}
- Raji wants to know the number of relations possible from A to B. How many numbers of relations are possible?
Which of the following is/are example of symmetric