English

Defines a relation on N: x + 4y = 10, x, y ∈ N Determine the above relation is reflexive, symmetric and transitive. - Mathematics

Advertisements
Advertisements

Question

Defines a relation on N:

x + 4y = 10, x, y ∈ N

Determine the above relation is reflexive, symmetric and transitive.

Sum

Solution

Recall that for any binary relation R on set A. We have,

R is reflexive if for all x ∈ A. xRx.

R is symmetric if for all x, y ∈ A, if xRy, then yRx.

R is transitive if for all x, y, z, if xRy and yRz, then xRz.

We have

x + 4y = 10, x, y ∈ N

This relation is defined on N (set of Natural Numbers)

The relation can also be defined as

R = {(x, y) : x + 4y = 10} on N

Check for Reflexivity:

∀ x ∈ N

We should have, (x, x) ∈ R.

4x + x = 10, which is obviously not true everytime.

Take x = 4,

4x + x = 10

⇒ 16 + 4 = 10

⇒ 20 = 10, which is not true.

This is 20 ≠ 10.

So, ∀ x ∈ N, then (x, x) ∉ R.

R is not reflexive.

Check for Symmetry:

∀ x, y ∈ N

If (x, y) ∈ R

4x + y = 10

Now, replace x by y and y by x. we get,

4y + x = 10, which may or may not be true.

Take x = 1 and y = 6

4x + y = 10

4(1) + 6 = 10

⇒ 10 = 10

4y + x = 10

⇒ 4(6) + 1 = 10

⇒ 24 + 1 = 10

⇒ 25 = 10, which is not true.

⇒ 4y + x ≠ 10

⇒ (x, y) ∉ R

So, if (x, y) ∈ R, and then (y, x) ∉ R ∀ x, y ∈ N

R is not symmeteric.

Check for Transitivity:

∀ x, y, z ∈ N

If (x, y) ∈ R and (y, z) ∈ R

Then, (x, z) ∈ R

We have,

4x + y = 10

⇒ y = 10 − 4x

Where x, y ∈ N

So, put x = 1

⇒ y = 10 - 4(1)

⇒ y = 10 - 4

⇒ y = 6

Put x = 2

⇒ y = 10 - 4(2)

⇒ y = 10 - 8

⇒ y = 2

We can't take y > 2, because if we put y = 3

⇒ y = 10 - 4(3)

⇒ y = 10 - 12

⇒ y = -2

But, y ≠ -2 as y ∈ N

so, only ordered pairs possible are

 R = {(1, 6), (2, 2)}

This relation R can never be transitive.

Because if (a, b) ∈ R, then (b, c) ∉ R.

R is not reflexive.

Hence, the relation is neither reflexive nor symmetric nor transitive.

shaalaa.com
  Is there an error in this question or solution?
Chapter 1: Relations - Exercise 1.1 [Page 11]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 1 Relations
Exercise 1.1 | Q 18.4 | Page 11

RELATED QUESTIONS

determination of whether the following relations are reflexive, symmetric, and transitive:

Relation R in the set  A  = {1, 2, 3...13, 14} defined as R = {(x,y):3x - y = 0}


Show that each of the relation R in the set A= {x  ∈ Z : 0 ≤ x  ≤ = 12} given by R = {(a, b) : |a - b| is a multiple of 4} is an equivalence relation. Find the set of all elements related to 1 in each case.


Given an example of a relation. Which is Symmetric but neither reflexive nor transitive.


Given an example of a relation. Which is  Reflexive and symmetric but not transitive.


Given an example of a relation. Which is Reflexive and transitive but not symmetric.


Given an example of a relation. Which is Symmetric and transitive but not reflexive.


Given a non-empty set X, consider P (X), which is the set of all subsets of X. Define the relation R in P(X) as follows:

For subsets A, B in P(X), ARB if and only if A ⊂ B. Is R an equivalence relation on P(X)? Justify your answer.


Let A be the set of all human beings in a town at a particular time. Determine whether of the following relation is reflexive, symmetric and transitive :

R = {(x, y) : x and y live in the same locality}


Give an example of a relation which is reflexive and symmetric but not transitive ?


Prove that the relation R on Z defined by
(a, b) ∈ R ⇔ a − b is divisible by 5
is an equivalence relation on Z.


If R = {(x, y) : x2 + y2 ≤ 4; x, y ∈ Z} is a relation on Z, write the domain of R.


Let A = {0, 1, 2, 3} and R be a relation on A defined as
R = {(0, 0), (0, 1), (0, 3), (1, 0), (1, 1), (2, 2), (3, 0), (3, 3)}
Is R reflexive? symmetric? transitive?


Let the relation R be defined on N by aRb iff 2a + 3b = 30. Then write R as a set of ordered pairs


Write the smallest equivalence relation on the set A = {1, 2, 3} ?


If R is a relation on the set A = {1, 2, 3} given by R = {(1, 1), (2, 2), (3, 3)}, then R is ____________ .


S is a relation over the set R of all real numbers and it is given by (a, b) ∈ S ⇔ ab ≥ 0. Then, S is _______________ .


Let A = {1, 2, 3, 4}, B = {4, 5, 6}, C = {5, 6}. Find A × (B ∩ C).


Let A = {1, 2, 3, 4}, B = {4, 5, 6}, C = {5, 6}. Find A × (B ∪ C).


Let L denote the set of all straight lines in a plane. Let a relation R be defined by lRm if and only if l is perpendicular to m ∀ l, m ∈ L. Then R is ______.


Let n be a fixed positive integer. Define a relation R in Z as follows: ∀ a, b ∈ Z, aRb if and only if a – b is divisible by n. Show that R is an equivalance relation


Let A = {1, 2, 3} and consider the relation R = {1, 1), (2, 2), (3, 3), (1, 2), (2, 3), (1,3)}. Then R is ______.


Let A = { 2, 3, 6 } Which of the following relations on A are reflexive?


Let A = {1, 2, 3}, then the relation R = {(1, 1), (1, 2), (2, 1)} on A is ____________.


If A is a finite set containing n distinct elements, then the number of relations on A is equal to ____________.


A relation R on a non – empty set A is an equivalence relation if it is ____________.


If f(x) = `1 - 1/"x", "then f"("f"(1/"x"))` ____________.


Let T be the set of all triangles in the Euclidean plane, and let a relation R on T be defined as aRb if a is congruent to b ∀ a, b ∈ T. Then R is ____________.


If A = {1,2,3}, B = {4,6,9} and R is a relation from A to B defined by ‘x is smaller than y’. The range of R is ____________.


Find: `int (x + 1)/((x^2 + 1)x) dx`


If A is a finite set consisting of n elements, then the number of reflexive relations on A is


On the set N of all natural numbers, define the relation R by a R b, if GCD of a and b is 2. Then, R is


Given a non-empty set X, define the relation R in P(X) as follows:

For A, B ∈ P(X), (4, B) ∈ R iff A ⊂ B. Prove that R is reflexive, transitive and not symmetric.


Let R = {(x, y) : x, y ∈ N and x2 – 4xy + 3y2 = 0}, where N is the set of all natural numbers. Then the relation R is ______.


Let N be the set of all natural numbers and R be a relation on N × N defined by (a, b) R (c, d) `⇔` ad = bc for all (a, b), (c, d) ∈ N × N. Show that R is an equivalence relation on N × N. Also, find the equivalence class of (2, 6), i.e., [(2, 6)].


A relation R on (1, 2, 3) is given by R = {(1, 1), (2, 2), (1, 2), (3, 3), (2, 3)}. Then the relation R is ______.


Statement 1: The intersection of two equivalence relations is always an equivalence relation.

Statement 2: The Union of two equivalence relations is always an equivalence relation.

Which one of the following is correct?


If a relation R on the set {a, b, c} defined by R = {(b, b)}, then classify the relation.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×