Advertisements
Advertisements
Question
A relation R on (1, 2, 3) is given by R = {(1, 1), (2, 2), (1, 2), (3, 3), (2, 3)}. Then the relation R is ______.
Options
Reflexive
Symmetric
Transitive
Symmetric and Transitive
Solution
A relation R on (1, 2, 3) is given by R = {(1, 1), (2, 2), (1, 2), (3, 3), (2, 3)}. Then the relation R is reflexive.
Explanation:
Let A = {1, 2, 3}
Relation on A
R = {(1, 1), (2, 2), (1, 2), (3, 3), (2, 3)}
∵ Every element of set A is related to itself
(1, 1), (2, 2), (3, 3) ∈ R
`\implies` R is reflexive.
Also (1, 2) ∈ R but (2, 1) ∉ R
So R is not symmetric
And (1, 2) ∈ R and (2, 3) ∈ R but (1, 3) ∉ R
So R is not transitive.
APPEARS IN
RELATED QUESTIONS
If R=[(x, y) : x+2y=8] is a relation on N, write the range of R.
Show that each of the relation R in the set A= {x ∈ Z : 0 ≤ x ≤ = 12} given by R = {(a,b) : a = b} is an equivalence relation. Find the set of all elements related to 1 in each case.
Let A = {1, 2, 3}. Then number of equivalence relations containing (1, 2) is
(A) 1
(B) 2
(C) 3
(D) 4
Let A be the set of all human beings in a town at a particular time. Determine whether of the following relation is reflexive, symmetric and transitive :
R = {(x, y) : x and y live in the same locality}
Give an example of a relation which is symmetric but neither reflexive nor transitive?
Defines a relation on N :
x > y, x, y ∈ N
Determine the above relation is reflexive, symmetric and transitive.
Let n be a fixed positive integer. Define a relation R on Z as follows:
(a, b) ∈ R ⇔ a − b is divisible by n.
Show that R is an equivalence relation on Z.
Let R be a relation on the set A of ordered pair of integers defined by (x, y) R (u, v) if xv = yu. Show that R is an equivalence relation.
Let O be the origin. We define a relation between two points P and Q in a plane if OP = OQ. Show that the relation, so defined is an equivalence relation.
Write the domain of the relation R defined on the set Z of integers as follows:-
(a, b) ∈ R ⇔ a2 + b2 = 25
If A = {3, 5, 7} and B = {2, 4, 9} and R is a relation given by "is less than", write R as a set ordered pairs.
Let R be the equivalence relation on the set Z of the integers given by R = { (a, b) : 2 divides a - b }.
Write the equivalence class [0].
If A = {a, b, c}, then the relation R = {(b, c)} on A is _______________ .
A relation ϕ from C to R is defined by x ϕ y ⇔ | x | = y. Which one is correct?
If R is a relation on the set A = {1, 2, 3, 4, 5, 6, 7, 8, 9} given by x R y ⇔ y = 3 x, then R = _____________ .
If A = {1, 2, 3}, then a relation R = {(2, 3)} on A is _____________ .
Let A = {1, 2, 3}. Then, the number of equivalence relations containing (1, 2) is ______.
Show that the relation S in the set A = [x ∈ Z : 0 ≤ x ≤ 12] given by S = [(a, b) : a, b ∈ Z, ∣a − b∣ is divisible by 3] is an equivalence relation.
Write the relation in the Roster form and hence find its domain and range :
R1 = {(a, a2) / a is prime number less than 15}
If A = {1, 2, 3, 4 }, define relations on A which have properties of being:
reflexive, transitive but not symmetric
Give an example of a map which is one-one but not onto
Give an example of a map which is neither one-one nor onto
Consider the non-empty set consisting of children in a family and a relation R defined as aRb if a is brother of b. Then R is ______.
Let R be the relation on N defined as by x + 2 y = 8 The domain of R is ____________.
Let S = {1, 2, 3, 4, 5} and let A = S x S. Define the relation R on A as follows:
(a, b) R (c, d) iff ad = cb. Then, R is ____________.
Total number of equivalence relations defined in the set S = {a, b, c} is ____________.
Given set A = {1, 2, 3} and a relation R = {(1, 2), (2, 1)}, the relation R will be ____________.
Students of Grade 9, planned to plant saplings along straight lines, parallel to each other to one side of the playground ensuring that they had enough play area. Let us assume that they planted one of the rows of the saplings along the line y = x − 4. Let L be the set of all lines which are parallel on the ground and R be a relation on L.
Answer the following using the above information.
- Let R = `{ ("L"_1, "L"_2) ∶ "L"_1 bot "L"_2 "where" "L"_1, "L"_2 in "L" }` which of the following is true?
A market research group conducted a survey of 2000 consumers and reported that 1720 consumers like product P1 and 1450 consumers like product P2. What is the least number that must have liked both the products?