English

If a = {1, 2, 3}, Then a Relation R = {(2, 3)} on a is (A) Symmetric and Transitive Only (B) Symmetric Only (C) Transitive Only (D) None of These - Mathematics

Advertisements
Advertisements

Question

If A = {1, 2, 3}, then a relation R = {(2, 3)} on A is _____________ .

Options

  • symmetric and transitive only

  • symmetric only

  • transitive only

  • none of these

MCQ

Solution

transitive only

The relation R is not reflexive because every element of A is not related to itself. Also, R is not symmetric since on interchanging the elements, the ordered pair in R is not contained in it.

R is transitive by default because there is only one element in it.

shaalaa.com
  Is there an error in this question or solution?
Chapter 1: Relations - Exercise 1.4 [Page 32]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 1 Relations
Exercise 1.4 | Q 21 | Page 32

RELATED QUESTIONS

Let N denote the set of all natural numbers and R be the relation on N × N defined by (a, b) R (c, d) if ad (b + c) = bc (a + d). Show that R is an equivalence relation.


determination of whether the following relations are reflexive, symmetric, and transitive:

Relation R in the set A of human beings in a town at a particular time given by (c) R = {(x, y): x is exactly 7 cm taller than y}


Show that the relation R in the set of real numbers, defined as R = {(a, b): a ≤ b2} is neither reflexive nor symmetric nor transitive.


Show that the relation R in the set {1, 2, 3} given by R = {(1, 2), (2, 1)} is symmetric but neither reflexive nor transitive.


Show that the relation R in the set A of points in a plane given by R = {(P, Q): distance of the point P from the origin is same as the distance of the point Q from the origin}, is an equivalence relation. Further, show that the set of all points related to a point P ≠ (0, 0) is the circle passing through P with origin as centre.


The following relation is defined on the set of real numbers.  aRb if |a| ≤ b

Find whether relation is reflexive, symmetric or transitive.


An integer m is said to be related to another integer n if m is a multiple of n. Check if the relation is symmetric, reflexive and transitive.


Let A = {abc} and the relation R be defined on A as follows: R = {(aa), (bc), (ab)}. Then, write minimum number of ordered pairs to be added in R to make it reflexive and transitive.


Defines a relation on :

x + y = 10, xy∈ N

Determine the above relation is reflexive, symmetric and transitive.


Show that the relation R on the set A = {x ∈ Z ; 0 ≤ x ≤ 12}, given by R = {(a, b) : a = b}, is an equivalence relation. Find the set of all elements related to 1.


Write the identity relation on set A = {a, b, c}.


Define an equivalence relation ?


Let A = {2, 3, 4, 5} and B = {1, 3, 4}. If R is the relation from A to B given by a R b if "a is a divisor of b". Write R as a set of ordered pairs.


Let A = {0, 1, 2, 3} and R be a relation on A defined as
R = {(0, 0), (0, 1), (0, 3), (1, 0), (1, 1), (2, 2), (3, 0), (3, 3)}
Is R reflexive? symmetric? transitive?


Write the smallest equivalence relation on the set A = {1, 2, 3} ?


R is a relation on the set Z of integers and it is given by
(x, y) ∈ R ⇔ | x − y | ≤ 1. Then, R is ______________ .


A relation R is defined from {2, 3, 4, 5} to {3, 6, 7, 10} by : x R y ⇔ x is relatively prime to y. Then, domain of R is ______________ .


If R is a relation on the set A = {1, 2, 3} given by R = {(1, 1), (2, 2), (3, 3)}, then R is ____________ .


The relation R = {(1, 1), (2, 2), (3, 3)} on the set {1, 2, 3} is ___________________ .


Mark the correct alternative in the following question:

Let R be a relation on the set N of natural numbers defined by nRm if n divides m. Then, R is _____________ .


Mark the correct alternative in the following question:

Let T be the set of all triangles in the Euclidean plane, and let a relation R on T be defined as aRb if a is congruent to b for all a, b  T. Then, R is ____________ .


Let A = {1, 2, 3, 4}, B = {4, 5, 6}, C = {5, 6}. Find A × (B ∩ C).


Let A = {6, 8} and B = {1, 3, 5}.
Let R = {(a, b)/a∈ A, b∈ B, a – b is an even number}. Show that R is an empty relation from A to B.


The following defines a relation on N:
x is greater than y, x, y ∈ N
Determine which of the above relations are reflexive, symmetric and transitive.


Every relation which is symmetric and transitive is also reflexive.


Let R be the relation on N defined as by x + 2 y = 8 The domain of R is ____________.


Let T be the set of all triangles in the Euclidean plane, and let a relation R on T be defined as aRb if a is congruent to b ∀ a, b ∈ T. Then R is ____________.


Let R be a relation on the set N of natural numbers denoted by nRm ⇔ n is a factor of m (i.e. n | m). Then, R is ____________.


Let A = {x : -1 ≤ x ≤ 1} and f : A → A is a function defined by f(x) = x |x| then f is ____________.


Given triangles with sides T1: 3, 4, 5; T2: 5, 12, 13; T3: 6, 8, 10; T4: 4, 7, 9 and a relation R inset of triangles defined as R = `{(Delta_1, Delta_2) : Delta_1  "is similar to"  Delta_2}`. Which triangles belong to the same equivalence class?


Given set A = {a, b, c}. An identity relation in set A is ____________.


A relation S in the set of real numbers is defined as `"xSy" => "x" - "y" + sqrt3`  is an irrational number, then relation S is ____________.


Students of Grade 9, planned to plant saplings along straight lines, parallel to each other to one side of the playground ensuring that they had enough play area. Let us assume that they planted one of the rows of the saplings along the line y = x − 4. Let L be the set of all lines which are parallel on the ground and R be a relation on L.

Answer the following using the above information.

  • Let R = `{ ("L"_1, "L"_2) ∶ "L"_1 bot "L"_2  "where"  "L"_1, "L"_2 in "L" }` which of the following is true?

If A = {1,2,3}, B = {4,6,9} and R is a relation from A to B defined by ‘x is smaller than y’. The range of R is ____________.


The value of k for which the system of equations x + ky + 3z = 0, 4x + 3y + kz = 0, 2x + y + 2z = 0 has nontrivial solution is


On the set N of all natural numbers, define the relation R by a R b, if GCD of a and b is 2. Then, R is


A market research group conducted a survey of 2000 consumers and reported that 1720 consumers like product P1 and 1450 consumers like product P2. What is the least number that must have liked both the products?


A relation 'R' in a set 'A' is called reflexive, if


Let L be a set of all straight lines in a plane. The relation R on L defined as 'perpendicular to' is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×
Our website is made possible by ad-free subscriptions or displaying online advertisements to our visitors.
If you don't like ads you can support us by buying an ad-free subscription or please consider supporting us by disabling your ad blocker. Thank you.