Advertisements
Advertisements
Question
If A = {a, b, c, d}, then a relation R = {(a, b), (b, a), (a, a)} on A is _____________ .
Options
symmetric and transitive only
reflexive and transitive only
symmetric only
transitive only
Solution
symmetric and transitive only
Reflexivity: Since (b, b) ∉ R, R is not reflexive on A.
Symmetry: Since (a, b) ∈ R and (b, a) ∈ R, R is symmetric on A.
Transitivity: Since (a, b) ∈ R, (b, a) ∈ R and (a, a) ∈ R, R is transitive on A
APPEARS IN
RELATED QUESTIONS
determination of whether the following relations are reflexive, symmetric, and transitive:
Relation R in the set A = {1, 2, 3...13, 14} defined as R = {(x,y):3x - y = 0}
determination of whether the following relations are reflexive, symmetric, and transitive:
Relation R in the set Z of all integers defined as
R = {(x, y): x − y is an integer}
Show that the relation R in the set R of real numbers, defined as R = {(a, b): a ≤ b2} is neither reflexive nor symmetric nor transitive.
Check whether the relation R defined in the set {1, 2, 3, 4, 5, 6} as R = {(a, b): b = a + 1} is reflexive, symmetric, or transitive.
Show that the relation R in the set A of points in a plane given by R = {(P, Q): distance of the point P from the origin is same as the distance of the point Q from the origin}, is an equivalence relation. Further, show that the set of all points related to a point P ≠ (0, 0) is the circle passing through P with origin as centre.
Let R be the relation in the set {1, 2, 3, 4} given by R = {(1, 2), (2, 2), (1, 1), (4, 4), (1, 3), (3, 3), (3, 2)}. Choose the correct answer.
An integer m is said to be related to another integer n if m is a multiple of n. Check if the relation is symmetric, reflexive and transitive.
Show that the relation '≥' on the set R of all real numbers is reflexive and transitive but not symmetric ?
Let A = {1, 2, 3} and R = {(1, 2), (1, 1), (2, 3)} be a relation on A. What minimum number of ordered pairs may be added to R so that it may become a transitive relation on A.
Let O be the origin. We define a relation between two points P and Q in a plane if OP = OQ. Show that the relation, so defined is an equivalence relation.
Let Z be the set of all integers and Z0 be the set of all non-zero integers. Let a relation R on Z × Z0be defined as (a, b) R (c, d) ⇔ ad = bc for all (a, b), (c, d) ∈ Z × Z0,
Prove that R is an equivalence relation on Z × Z0.
Let R = {(x, y) : |x2 − y2| <1) be a relation on set A = {1, 2, 3, 4, 5}. Write R as a set of ordered pairs.
Define a transitive relation ?
Let the relation R be defined on N by aRb iff 2a + 3b = 30. Then write R as a set of ordered pairs
Write the smallest equivalence relation on the set A = {1, 2, 3} ?
Let A = {2, 3, 4, 5, ..., 17, 18}. Let '≃' be the equivalence relation on A × A, cartesian product of Awith itself, defined by (a, b) ≃ (c, d) if ad = bc. Then, the number of ordered pairs of the equivalence class of (3, 2) is _______________ .
Let A = {1, 2, 3}. Then, the number of relations containing (1, 2) and (1, 3) which are reflexive and symmetric but not transitive is ______.
Let R = {(a, a), (b, b), (c, c), (a, b)} be a relation on set A = a, b, c. Then, R is _______________ .
Mark the correct alternative in the following question:
Let R be a relation on the set N of natural numbers defined by nRm if n divides m. Then, R is _____________ .
Mark the correct alternative in the following question:
Consider a non-empty set consisting of children in a family and a relation R defined as aRb if a is brother of b. Then, R is _____________ .
R = {(a, b) / b = a + 1, a ∈ Z, 0 < a < 5}. Find the Range of R.
Consider the set A = {1, 2, 3} and R be the smallest equivalence relation on A, then R = ______
Let Z be the set of integers and R be the relation defined in Z such that aRb if a – b is divisible by 3. Then R partitions the set Z into ______ pairwise disjoint subsets
Let R be relation defined on the set of natural number N as follows:
R = {(x, y): x ∈N, y ∈N, 2x + y = 41}. Find the domain and range of the relation R. Also verify whether R is reflexive, symmetric and transitive
Let us define a relation R in R as aRb if a ≥ b. Then R is ______.
Let A = {1, 2, 3} and consider the relation R = {1, 1), (2, 2), (3, 3), (1, 2), (2, 3), (1,3)}. Then R is ______.
Let the relation R be defined in N by aRb if 2a + 3b = 30. Then R = ______.
Let R = {(3, 1), (1, 3), (3, 3)} be a relation defined on the set A = {1, 2, 3}. Then R is symmetric, transitive but not reflexive.
Let A = { 2, 3, 6 } Which of the following relations on A are reflexive?
Let A = {1, 2, 3} and R = {(1, 2), (2, 3), (1, 3)} be a relation on A. Then, R is ____________.
Let R be a relation on the set N of natural numbers denoted by nRm ⇔ n is a factor of m (i.e. n | m). Then, R is ____________.
Total number of equivalence relations defined in the set S = {a, b, c} is ____________.
Let A = {x : -1 ≤ x ≤ 1} and f : A → A is a function defined by f(x) = x |x| then f is ____________.
A general election of Lok Sabha is a gigantic exercise. About 911 million people were eligible to vote and voter turnout was about 67%, the highest ever
Let I be the set of all citizens of India who were eligible to exercise their voting right in the general election held in 2019. A relation ‘R’ is defined on I as follows:
R = {(V1, V2) ∶ V1, V2 ∈ I and both use their voting right in the general election - 2019}
- The above-defined relation R is ____________.
If A is a finite set consisting of n elements, then the number of reflexive relations on A is
On the set N of all natural numbers, define the relation R by a R b, if GCD of a and b is 2. Then, R is
In a group of 52 persons, 16 drink tea but not coffee, while 33 drink tea. How many persons drink coffee but not tea?
There are 600 student in a school. If 400 of them can speak Telugu, 300 can speak Hindi, then the number of students who can speak both Telugu and Hindi is:
Statement 1: The intersection of two equivalence relations is always an equivalence relation.
Statement 2: The Union of two equivalence relations is always an equivalence relation.
Which one of the following is correct?