Advertisements
Advertisements
Question
Let A = {2, 3, 4, 5, ..., 17, 18}. Let '≃' be the equivalence relation on A × A, cartesian product of Awith itself, defined by (a, b) ≃ (c, d) if ad = bc. Then, the number of ordered pairs of the equivalence class of (3, 2) is _______________ .
Options
4
5
6
7
Solution
6
The ordered pairs of the equivalence class of (3, 2) are {(3, 2), (6, 4), (9, 6), (12, 8), (15, 10), (18, 12)}.
We observe that these are 6 pairs.
APPEARS IN
RELATED QUESTIONS
Let A = {1, 2, 3,......, 9} and R be the relation in A × A defined by (a, b) R (c, d) if a + d = b + c for (a, b), (c, d) in A × A. Prove that R is an equivalence relation. Also, obtain the equivalence class [(2, 5)].
If R=[(x, y) : x+2y=8] is a relation on N, write the range of R.
determination of whether the following relations are reflexive, symmetric, and transitive:
Relation R in the set A = {1, 2, 3...13, 14} defined as R = {(x,y):3x - y = 0}
Show that the relation R in the set A = {1, 2, 3, 4, 5} given by R = {(a, b) : |a - b| is even}, is an equivalence relation. Show that all the elements of {1, 3, 5} are related to each other and all the elements of {2, 4} are related to each other. But no element of {1, 3, 5} is related to any element of {2, 4}.
Let A = {x ∈ Z : 0 ≤ x ≤ 12}. Show that R = {(a, b) : a, b ∈ A, |a – b| is divisible by 4}is an equivalence relation. Find the set of all elements related to 1. Also write the equivalence class [2]
Let A be the set of all human beings in a town at a particular time. Determine whether of the following relation is reflexive, symmetric and transitive :
R = {(x, y) : x and y work at the same place}
Prove that every identity relation on a set is reflexive, but the converse is not necessarily true.
Defines a relation on N :
xy is square of an integer, x, y ∈ N
Determine the above relation is reflexive, symmetric and transitive.
Defines a relation on N:
x + 4y = 10, x, y ∈ N
Determine the above relation is reflexive, symmetric and transitive.
Let R be a relation on the set A of ordered pair of integers defined by (x, y) R (u, v) if xv = yu. Show that R is an equivalence relation.
Show that the relation R on the set A = {x ∈ Z ; 0 ≤ x ≤ 12}, given by R = {(a, b) : a = b}, is an equivalence relation. Find the set of all elements related to 1.
Let Z be the set of all integers and Z0 be the set of all non-zero integers. Let a relation R on Z × Z0be defined as (a, b) R (c, d) ⇔ ad = bc for all (a, b), (c, d) ∈ Z × Z0,
Prove that R is an equivalence relation on Z × Z0.
State the reason for the relation R on the set {1, 2, 3} given by R = {(1, 2), (2, 1)} to be transitive ?
Let R be the equivalence relation on the set Z of the integers given by R = { (a, b) : 2 divides a - b }.
Write the equivalence class [0].
Let the relation R be defined on N by aRb iff 2a + 3b = 30. Then write R as a set of ordered pairs
If a relation R is defined on the set Z of integers as follows:
(a, b) ∈ R ⇔ a2 + b2 = 25. Then, domain (R) is ___________
If A = {1, 2, 3}, B = {1, 4, 6, 9} and R is a relation from A to B defined by 'x is greater than y'. The range of R is ______________ .
Let R be the relation on the set A = {1, 2, 3, 4} given by R = {(1, 2), (2, 2), (1, 1), (4, 4), (1, 3), (3, 3), (3, 2)}. Then, _____________________ .
The relation R = {(1, 1), (2, 2), (3, 3)} on the set {1, 2, 3} is ___________________ .
Show that the relation R on the set Z of integers, given by R = {(a,b):2divides (a - b)} is an equivalence relation.
Show that the relation R on R defined as R = {(a, b): a ≤ b}, is reflexive, and transitive but not symmetric.
Show that the relation R defined by (a, b)R(c,d) ⇒ a + d = b + c on the A x A , where A = {1, 2,3,...,10} is an equivalence relation. Hence write the equivalence class [(3, 4)]; a, b, c,d ∈ A.
If A = {a, b, c}, B = (x , y} find B × B.
Let A = {1, 2, 3, 4}, B = {4, 5, 6}, C = {5, 6}. Find (A × B) ∪ (A × C).
Let A = {6, 8} and B = {1, 3, 5}.
Let R = {(a, b)/a∈ A, b∈ B, a – b is an even number}. Show that R is an empty relation from A to B.
Write the relation in the Roster form and hence find its domain and range :
R1 = {(a, a2) / a is prime number less than 15}
For real numbers x and y, define xRy if and only if x – y + `sqrt(2)` is an irrational number. Then the relation R is ______.
Given A = {2, 3, 4}, B = {2, 5, 6, 7}. Construct an example of the following:
an injective mapping from A to B
Give an example of a map which is one-one but not onto
Let A = {1, 2, 3}. Which of the following is not an equivalence relation on A?
Let A = {1, 2, 3}, then the domain of the relation R = {(1, 1), (2, 3), (2, 1)} defined on A is ____________.
An organization conducted a bike race under 2 different categories-boys and girls. Totally there were 250 participants. Among all of them finally, three from Category 1 and two from Category 2 were selected for the final race. Ravi forms two sets B and G with these participants for his college project. Let B = {b1,b2,b3} G={g1,g2} where B represents the set of boys selected and G the set of girls who were selected for the final race.
Ravi decides to explore these sets for various types of relations and functions.
- Ravi wishes to form all the relations possible from B to G. How many such relations are possible?
A relation in a set 'A' is known as empty relation:-
Let A = {3, 5}. Then number of reflexive relations on A is ______.
Read the following passage:
An organization conducted bike race under two different categories – Boys and Girls. There were 28 participants in all. Among all of them, finally three from category 1 and two from category 2 were selected for the final race. Ravi forms two sets B and G with these participants for his college project. |
Based on the above information, answer the following questions:
- How many relations are possible from B to G? (1)
- Among all the possible relations from B to G, how many functions can be formed from B to G? (1)
- Let R : B `rightarrow` B be defined by R = {(x, y) : x and y are students of the same sex}. Check if R is an equivalence relation. (2)
OR
A function f : B `rightarrow` G be defined by f = {(b1, g1), (b2, g2), (b3, g1)}. Check if f is bijective. Justify your answer. (2)
Let N be the set of all natural numbers and R be a relation on N × N defined by (a, b) R (c, d) `⇔` ad = bc for all (a, b), (c, d) ∈ N × N. Show that R is an equivalence relation on N × N. Also, find the equivalence class of (2, 6), i.e., [(2, 6)].