Advertisements
Advertisements
Questions
Let A be the set of all human beings in a town at a particular time. Determine whether of the following relation is reflexive, symmetric and transitive :
R = {(x, y) : x and y work at the same place}
determination of whether the following relations are reflexive, symmetric, and transitive:
Relation R in the set A of human beings in a town at a particular time given by R = {(x, y) : x and y work at the same place}
Solution
(i) Reflexivity:
Let x be an arbitrary element of R. Then,
x∈R
⇒x and x work at the same place, which is true since they are the same.
⇒(x, x) ∈R
So, R is a reflexive relation.
(ii) Symmetry :
Let (x, y)∈R
⇒x and y work at the same place
⇒y and x work at the same place
⇒(y, x)∈R
So, R is a symmetric relation.
(iii) Transitivity:
Let (x, y)∈R and (y, z)∈R. Then,
x and y work at the same place.
y and z also work at the same place.
⇒ x , y and z all work at the same place.
⇒x and z work at the same place.
⇒ (x, z)∈R
So, R is a transitive relation.
APPEARS IN
RELATED QUESTIONS
determination of whether the following relations are reflexive, symmetric, and transitive:
Relation R in the set A = {1, 2, 3...13, 14} defined as R = {(x,y):3x - y = 0}
Show that the relation R in the set A = {1, 2, 3, 4, 5} given by R = {(a, b) : |a - b| is even}, is an equivalence relation. Show that all the elements of {1, 3, 5} are related to each other and all the elements of {2, 4} are related to each other. But no element of {1, 3, 5} is related to any element of {2, 4}.
Show that each of the relation R in the set A= {x ∈ Z : 0 ≤ x ≤ = 12} given by R = {(a,b) : a = b} is an equivalence relation. Find the set of all elements related to 1 in each case.
Given an example of a relation. Which is Symmetric but neither reflexive nor transitive.
Let A = {1, 2, 3}. Then number of relations containing (1, 2) and (1, 3) which are reflexive and symmetric but not transitive is
(A) 1 (B) 2 (C) 3 (D) 4
Let A be the set of all human beings in a town at a particular time. Determine whether of the following relation is reflexive, symmetric and transitive:
R = {(x, y) : x is wife of y}
Is it true that every relation which is symmetric and transitive is also reflexive? Give reasons.
Give an example of a relation which is symmetric but neither reflexive nor transitive?
Defines a relation on N :
xy is square of an integer, x, y ∈ N
Determine the above relation is reflexive, symmetric and transitive.
m is said to be related to n if m and n are integers and m − n is divisible by 13. Does this define an equivalence relation?
If R and S are relations on a set A, then prove that R is reflexive and S is any relation ⇒ R ∪ S is reflexive ?
If R and S are transitive relations on a set A, then prove that R ∪ S may not be a transitive relation on A.
Write the domain of the relation R defined on the set Z of integers as follows:-
(a, b) ∈ R ⇔ a2 + b2 = 25
If A = {2, 3, 4}, B = {1, 3, 7} and R = {(x, y) : x ∈ A, y ∈ B and x < y} is a relation from A to B, then write R−1.
Define a reflexive relation ?
Let R be the equivalence relation on the set Z of the integers given by R = { (a, b) : 2 divides a - b }.
Write the equivalence class [0].
If A = {a, b, c}, then the relation R = {(b, c)} on A is _______________ .
If R is a relation on the set A = {1, 2, 3} given by R = {(1, 1), (2, 2), (3, 3)}, then R is ____________ .
Let R be the relation on the set A = {1, 2, 3, 4} given by R = {(1, 2), (2, 2), (1, 1), (4, 4), (1, 3), (3, 3), (3, 2)}. Then, _____________________ .
The relation R = {(1, 1), (2, 2), (3, 3)} on the set {1, 2, 3} is ___________________ .
Mark the correct alternative in the following question:
Let L denote the set of all straight lines in a plane. Let a relation R be defined by lRm if l is perpendicular to m for all l, m ∈ L. Then, R is ______________ .
Show that the relation R on the set Z of all integers, given by R = {(a,b) : 2 divides (a-b)} is an equivalence relation.
Show that the relation R defined by (a, b)R(c,d) ⇒ a + d = b + c on the A x A , where A = {1, 2,3,...,10} is an equivalence relation. Hence write the equivalence class [(3, 4)]; a, b, c,d ∈ A.
Let R be a relation on the set N of natural numbers defined by nRm if n divides m. Then R is ______.
The following defines a relation on N:
x y is square of an integer x, y ∈ N
Determine which of the above relations are reflexive, symmetric and transitive.
Which of the following is not an equivalence relation on I, the set of integers: x, y
Let A = {1, 2, 3, 4, 5, 6} Which of the following partitions of A correspond to an equivalence relation on A?
A relation R in set A = {1, 2, 3} is defined as R = {(1, 1), (1, 2), (2, 2), (3, 3)}. Which of the following ordered pair in R shall be removed to make it an equivalence relation in A?
Sherlin and Danju are playing Ludo at home during Covid-19. While rolling the dice, Sherlin’s sister Raji observed and noted the possible outcomes of the throw every time belongs to set {1,2,3,4,5,6}. Let A be the set of players while B be the set of all possible outcomes.
A = {S, D}, B = {1,2,3,4,5,6}
- Let R ∶ B → B be defined by R = {(x, y): y is divisible by x} is ____________.
The value of k for which the system of equations x + ky + 3z = 0, 4x + 3y + kz = 0, 2x + y + 2z = 0 has nontrivial solution is
The number of surjective functions from A to B where A = {1, 2, 3, 4} and B = {a, b} is
Define the relation R in the set N × N as follows:
For (a, b), (c, d) ∈ N × N, (a, b) R (c, d) if ad = bc. Prove that R is an equivalence relation in N × N.
Given a non-empty set X, define the relation R in P(X) as follows:
For A, B ∈ P(X), (4, B) ∈ R iff A ⊂ B. Prove that R is reflexive, transitive and not symmetric.
Let f(x)= ax2 + bx + c be such that f(1) = 3, f(–2) = λ and f(3) = 4. If f(0) + f(1) + f(–2) + f(3) = 14, then λ is equal to ______.
Let A = {3, 5}. Then number of reflexive relations on A is ______.
A relation R on (1, 2, 3) is given by R = {(1, 1), (2, 2), (1, 2), (3, 3), (2, 3)}. Then the relation R is ______.