Advertisements
Advertisements
प्रश्न
Let A be the set of all human beings in a town at a particular time. Determine whether of the following relation is reflexive, symmetric and transitive :
R = {(x, y) : x and y work at the same place}
determination of whether the following relations are reflexive, symmetric, and transitive:
Relation R in the set A of human beings in a town at a particular time given by R = {(x, y) : x and y work at the same place}
उत्तर
(i) Reflexivity:
Let x be an arbitrary element of R. Then,
x∈R
⇒x and x work at the same place, which is true since they are the same.
⇒(x, x) ∈R
So, R is a reflexive relation.
(ii) Symmetry :
Let (x, y)∈R
⇒x and y work at the same place
⇒y and x work at the same place
⇒(y, x)∈R
So, R is a symmetric relation.
(iii) Transitivity:
Let (x, y)∈R and (y, z)∈R. Then,
x and y work at the same place.
y and z also work at the same place.
⇒ x , y and z all work at the same place.
⇒x and z work at the same place.
⇒ (x, z)∈R
So, R is a transitive relation.
APPEARS IN
संबंधित प्रश्न
determination of whether the following relations are reflexive, symmetric, and transitive:
Relation R in the set Z of all integers defined as
R = {(x, y): x − y is an integer}
Show that the relation R in the set A of points in a plane given by R = {(P, Q): distance of the point P from the origin is same as the distance of the point Q from the origin}, is an equivalence relation. Further, show that the set of all points related to a point P ≠ (0, 0) is the circle passing through P with origin as centre.
The binary operation *: R x R → R is defined as a *b = 2a + b Find (2 * 3)*4
Let A = {1, 2, 3}, and let R1 = {(1, 1), (1, 3), (3, 1), (2, 2), (2, 1), (3, 3)}, R2 = {(2, 2), (3, 1), (1, 3)}, R3 = {(1, 3), (3, 3)}. Find whether or not each of the relations R1, R2, R3 on A is (i) reflexive (ii) symmetric (iii) transitive.
The following relation is defined on the set of real numbers.
aRb if 1 + ab > 0
Find whether relation is reflexive, symmetric or transitive.
If A = {1, 2, 3, 4} define relations on A which have properties of being reflexive, transitive but not symmetric ?
Give an example of a relation which is symmetric but neither reflexive nor transitive?
Let A = {1, 2, 3} and R = {(1, 2), (1, 1), (2, 3)} be a relation on A. What minimum number of ordered pairs may be added to R so that it may become a transitive relation on A.
Let A = {a, b, c} and the relation R be defined on A as follows: R = {(a, a), (b, c), (a, b)}. Then, write minimum number of ordered pairs to be added in R to make it reflexive and transitive.
Show that the relation R on the set Z of integers, given by
R = {(a, b) : 2 divides a – b}, is an equivalence relation.
Let L be the set of all lines in XY-plane and R be the relation in L defined as R = {L1, L2) : L1 is parallel to L2}. Show that R is an equivalence relation. Find the set of all lines related to the line y= 2x + 4.
Show that the relation R, defined in the set A of all polygons as R = {(P1, P2) : P1 and P2 have same number of sides},
is an equivalence relation. What is the set of all elements in A related to the right-angled triangle T with sides 3, 4 and 5?
Let O be the origin. We define a relation between two points P and Q in a plane if OP = OQ. Show that the relation, so defined is an equivalence relation.
Let R = {(x, y) : |x2 − y2| <1) be a relation on set A = {1, 2, 3, 4, 5}. Write R as a set of ordered pairs.
Let A = {3, 5, 7}, B = {2, 6, 10} and R be a relation from A to B defined by R = {(x, y) : x and y are relatively prime}. Then, write R and R−1.
State the reason for the relation R on the set {1, 2, 3} given by R = {(1, 2), (2, 1)} to be transitive ?
Let R be a relation on N defined by x + 2y = 8. The domain of R is _______________ .
Let A = {1, 2, 3} and B = {(1, 2), (2, 3), (1, 3)} be a relation on A. Then, R is ________________ .
If R is the largest equivalence relation on a set A and S is any relation on A, then _____________ .
Mark the correct alternative in the following question:
Let T be the set of all triangles in the Euclidean plane, and let a relation R on T be defined as aRb if a is congruent to b for all a, b T. Then, R is ____________ .
Show that the relation R on the set Z of integers, given by R = {(a,b):2divides (a - b)} is an equivalence relation.
Show that the relation S in the set A = [x ∈ Z : 0 ≤ x ≤ 12] given by S = [(a, b) : a, b ∈ Z, ∣a − b∣ is divisible by 3] is an equivalence relation.
If A = {a, b, c}, B = (x , y} find B × A.
If A = {a, b, c}, B = (x , y} find A × A.
Let A = {1, 2, 3, 4}, B = {4, 5, 6}, C = {5, 6} Find (A × B) ∩ (A × C).
Let A = {1, 2, 3, 4}, B = {4, 5, 6}, C = {5, 6}. Find (A × B) ∪ (A × C).
Let A = {0, 1, 2, 3} and define a relation R on A as follows: R = {(0, 0), (0, 1), (0, 3), (1, 0), (1, 1), (2, 2), (3, 0), (3, 3)}. Is R reflexive? symmetric? transitive?
Consider the set A = {1, 2, 3} and the relation R = {(1, 2), (1, 3)}. R is a transitive relation.
Give an example of a map which is neither one-one nor onto
Let A = {1, 2, 3, ... 9} and R be the relation in A × A defined by (a, b) R(c, d) if a + d = b + c for (a, b), (c, d) in A × A. Prove that R is an equivalence relation and also obtain the equivalent class [(2, 5)]
The maximum number of equivalence relations on the set A = {1, 2, 3} are ______.
If a relation R on the set {1, 2, 3} be defined by R = {(1, 2)}, then R is ______.
Let us define a relation R in R as aRb if a ≥ b. Then R is ______.
Let A = {1, 2, 3} and consider the relation R = {1, 1), (2, 2), (3, 3), (1, 2), (2, 3), (1,3)}. Then R is ______.
Let the relation R be defined on the set A = {1, 2, 3, 4, 5} by R = {(a, b) : |a2 – b2| < 8. Then R is given by ______.
Let A = {1, 2, 3, 4, 5, 6} Which of the following partitions of A correspond to an equivalence relation on A?
Let A = {1, 2, 3} and consider the relation R = {(1, 1), (2, 2), (3, 3), (1, 2), (2, 3), (1, 3)}. Then R is ____________.
A relation S in the set of real numbers is defined as `"xSy" => "x" - "y" + sqrt3` is an irrational number, then relation S is ____________.
A relation 'R' in a set 'A' is called a universal relation, if each element of' A' is related to :-
If a relation R on the set {a, b, c} defined by R = {(b, b)}, then classify the relation.