हिंदी

If R is the Largest Equivalence Relation on a Set a and S is Any Relation on A, Then (A) R ⊂ S (B) S ⊂ R (C) R = S (D) None of These - Mathematics

Advertisements
Advertisements

प्रश्न

If R is the largest equivalence relation on a set A and S is any relation on A, then _____________ .

विकल्प

  • R ⊂ S

  • S ⊂ R

  • R = S

  • none of these

MCQ

उत्तर

S ⊂ R

Since R is the largest equivalence relation on set A,

R ⊆ A × A

Since S is any relation on A,

S ⊂ R ⊆ A × A

So, S ⊂ R

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 1: Relations - Exercise 1.4 [पृष्ठ ३२]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 1 Relations
Exercise 1.4 | Q 17 | पृष्ठ ३२

संबंधित प्रश्न

determination of whether the following relations are reflexive, symmetric, and transitive:

Relation R in the set N of natural numbers defined as

R = {(x, y): y = x + 5 and x < 4}


Given an example of a relation. Which is Transitive but neither reflexive nor symmetric.


Let L be the set of all lines in XY plane and R be the relation in L defined as R = {(L1, L2): L1 is parallel to L2}. Show that R is an equivalence relation. Find the set of all lines related to the line y = 2x + 4.


Let R be the relation in the set {1, 2, 3, 4} given by R = {(1, 2), (2, 2), (1, 1), (4, 4), (1, 3), (3, 3), (3, 2)}. Choose the correct answer.


Let A be the set of all human beings in a town at a particular time. Determine whether of the following relation is reflexive, symmetric and transitive:

R = {(x, y) : x is wife of y}


Test whether the following relation R3 is (i) reflexive (ii) symmetric and (iii) transitive:

R3 on R is defined by (a, b) ∈ R3 `⇔` a2 – 4ab + 3b2 = 0.


Let A = {1, 2, 3}, and let R1 = {(1, 1), (1, 3), (3, 1), (2, 2), (2, 1), (3, 3)}, R2 = {(2, 2), (3, 1), (1, 3)}, R3 = {(1, 3), (3, 3)}. Find whether or not each of the relations R1, R2, R3 on A is (i) reflexive (ii) symmetric (iii) transitive.


The following relation is defined on the set of real numbers.  aRb if |a| ≤ b

Find whether relation is reflexive, symmetric or transitive.


Is it true that every relation which is symmetric and transitive is also reflexive? Give reasons.


Give an example of a relation which is symmetric and transitive but not reflexive?


Give an example of a relation which is symmetric but neither reflexive nor transitive?


Give an example of a relation which is transitive but neither reflexive nor symmetric?


Defines a relation on :

x + y = 10, xy∈ N

Determine the above relation is reflexive, symmetric and transitive.


Let O be the origin. We define a relation between two points P and Q in a plane if OP = OQ. Show that the relation, so defined is an equivalence relation.


Let Z be the set of all integers and Z0 be the set of all non-zero integers. Let a relation R on Z × Z0be defined as (a, b) R (c, d) ⇔ ad = bc for all (a, b), (c, d) ∈ Z × Z0,
Prove that R is an equivalence relation on Z × Z0.


If R and S are transitive relations on a set A, then prove that R ∪ S may not be a transitive relation on A.


If R = {(x, y) : x2 + y2 ≤ 4; x, y ∈ Z} is a relation on Z, write the domain of R.


Let A = {0, 1, 2, 3} and R be a relation on A defined as
R = {(0, 0), (0, 1), (0, 3), (1, 0), (1, 1), (2, 2), (3, 0), (3, 3)}
Is R reflexive? symmetric? transitive?


If A = {1, 2, 3}, B = {1, 4, 6, 9} and R is a relation from A to B defined by 'x is greater than y'. The range of R is ______________ .


If A = {1, 2, 3}, then a relation R = {(2, 3)} on A is _____________ .


The relation R = {(1, 1), (2, 2), (3, 3)} on the set {1, 2, 3} is ___________________ .


In the set Z of all integers, which of the following relation R is not an equivalence relation ?


Mark the correct alternative in the following question:

For real numbers x and y, define xRy if `x-y+sqrt2` is an irrational number. Then the relation R is ___________ .


Show that the relation R on the set Z of integers, given by R = {(a,b):2divides (a - b)} is an equivalence relation. 


Show that the relation S in the set A = [x ∈ Z : 0 ≤ x ≤ 12] given by S = [(a, b) : a, b ∈ Z, ∣a − b∣ is divisible by 3] is an equivalence relation.


If A = {a, b, c}, B = (x , y} find B × A.


Let A = {0, 1, 2, 3} and define a relation R on A as follows: R = {(0, 0), (0, 1), (0, 3), (1, 0), (1, 1), (2, 2), (3, 0), (3, 3)}. Is R reflexive? symmetric? transitive?


If A = {1, 2, 3, 4 }, define relations on A which have properties of being:
reflexive, transitive but not symmetric


Consider the non-empty set consisting of children in a family and a relation R defined as aRb if a is brother of b. Then R is ______.


R = {(1, 1), (2, 2), (1, 2), (2, 1), (2, 3)} be a relation on A, then R is ____________.


Let T be the set of all triangles in the Euclidean plane, and let a relation R on T be defined as aRb if a is congruent to b ∀ a, b ∈ T. Then R is ____________.


Let S = {1, 2, 3, 4, 5} and let A = S x S. Define the relation R on A as follows:
(a, b) R (c, d) iff ad = cb. Then, R is ____________.


Let R be the relation “is congruent to” on the set of all triangles in a plane is ____________.


Let A = {x : -1 ≤ x ≤ 1} and f : A → A is a function defined by f(x) = x |x| then f is ____________.


Given set A = {1, 2, 3} and a relation R = {(1, 2), (2, 1)}, the relation R will be ____________.


The relation > (greater than) on the set of real numbers is


Define the relation R in the set N × N as follows:

For (a, b), (c, d) ∈ N × N, (a, b) R (c, d) if ad = bc. Prove that R is an equivalence relation in N × N.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×