Advertisements
Advertisements
प्रश्न
Give an example of a relation which is symmetric and transitive but not reflexive?
उत्तर
⇒ Let A = {-5, -6}.
The relation R on a set A is defined as follows:
R = {-5, -6), (-6, -5), (-5, -5)}
The relation R is not reflexive because (-6, -6) ∉ R.
∴ R is not reflexive
⇒ The relation R is symmetric because (-5, -6) ∈ R and (-6, -5) ∈ R.
∴ R is symmetric
⇒ And, if (-5, -6) and (-6, -5) ∈ R, then (-5, -5) ∈ R
∴ R is transitive.
Hence, the relation R is symmetric and transitive but not reflexive.
APPEARS IN
संबंधित प्रश्न
Show that each of the relation R in the set A= {x ∈ Z : 0 ≤ x ≤ = 12} given by R = {(a,b) : a = b} is an equivalence relation. Find the set of all elements related to 1 in each case.
Given an example of a relation. Which is Symmetric and transitive but not reflexive.
Show that the relation R defined in the set A of all polygons as R = {(P1, P2): P1 and P2have same number of sides}, is an equivalence relation. What is the set of all elements in A related to the right angle triangle T with sides 3, 4 and 5?
Test whether the following relation R2 is (i) reflexive (ii) symmetric and (iii) transitive:
R2 on Z defined by (a, b) ∈ R2 ⇔ |a – b| ≤ 5
If A = {1, 2, 3, 4} define relations on A which have properties of being reflexive, symmetric and transitive ?
Show that the relation R defined by R = {(a, b) : a – b is divisible by 3; a, b ∈ Z} is an equivalence relation.
Prove that the relation R on Z defined by
(a, b) ∈ R ⇔ a − b is divisible by 5
is an equivalence relation on Z.
Let Z be the set of all integers and Z0 be the set of all non-zero integers. Let a relation R on Z × Z0be defined as (a, b) R (c, d) ⇔ ad = bc for all (a, b), (c, d) ∈ Z × Z0,
Prove that R is an equivalence relation on Z × Z0.
Write the domain of the relation R defined on the set Z of integers as follows:-
(a, b) ∈ R ⇔ a2 + b2 = 25
Define a transitive relation ?
If A = {3, 5, 7} and B = {2, 4, 9} and R is a relation given by "is less than", write R as a set ordered pairs.
If a relation R is defined on the set Z of integers as follows:
(a, b) ∈ R ⇔ a2 + b2 = 25. Then, domain (R) is ___________
The relation 'R' in N × N such that
(a, b) R (c, d) ⇔ a + d = b + c is ______________ .
A relation R is defined from {2, 3, 4, 5} to {3, 6, 7, 10} by : x R y ⇔ x is relatively prime to y. Then, domain of R is ______________ .
A relation ϕ from C to R is defined by x ϕ y ⇔ | x | = y. Which one is correct?
Let R be a relation on N defined by x + 2y = 8. The domain of R is _______________ .
If R is the largest equivalence relation on a set A and S is any relation on A, then _____________ .
Mark the correct alternative in the following question:
The maximum number of equivalence relations on the set A = {1, 2, 3} is _______________ .
Mark the correct alternative in the following question:
Let L denote the set of all straight lines in a plane. Let a relation R be defined by lRm if l is perpendicular to m for all l, m ∈ L. Then, R is ______________ .
Write the relation in the Roster form and hence find its domain and range:
R2 = `{("a", 1/"a") "/" 0 < "a" ≤ 5, "a" ∈ "N"}`
Let A = {0, 1, 2, 3} and define a relation R on A as follows: R = {(0, 0), (0, 1), (0, 3), (1, 0), (1, 1), (2, 2), (3, 0), (3, 3)}. Is R reflexive? symmetric? transitive?
Let L denote the set of all straight lines in a plane. Let a relation R be defined by lRm if and only if l is perpendicular to m ∀ l, m ∈ L. Then R is ______.
If A = {1, 2, 3, 4 }, define relations on A which have properties of being:
reflexive, symmetric and transitive
Given A = {2, 3, 4}, B = {2, 5, 6, 7}. Construct an example of the following:
an injective mapping from A to B
Given A = {2, 3, 4}, B = {2, 5, 6, 7}. Construct an example of the following:
a mapping from B to A
The following defines a relation on N:
x + 4y = 10 x, y ∈ N.
Determine which of the above relations are reflexive, symmetric and transitive.
Let T be the set of all triangles in the Euclidean plane, and let a relation R on T be defined as aRb if a is congruent to b ∀ a, b ∈ T. Then R is ______.
Let the relation R be defined on the set A = {1, 2, 3, 4, 5} by R = {(a, b) : |a2 – b2| < 8. Then R is given by ______.
Every relation which is symmetric and transitive is also reflexive.
Let A = {1, 2, 3}. Which of the following is not an equivalence relation on A?
Let A = {1, 2, 3} and R = {(1, 2), (2, 3), (1, 3)} be a relation on A. Then, R is ____________.
A relation R on a non – empty set A is an equivalence relation if it is ____________.
Let `"f"("x") = ("x" - 1)/("x" + 1),` then f(f(x)) is ____________.
The relation R = {(1,1),(2,2),(3,3)} on {1,2,3} is ____________.
Let a set A = A1 ∪ A2 ∪ ... ∪ Ak, where Ai ∩ Aj = Φ for i ≠ j, 1 ≤ i, j ≤ k. Define the relation R from A to A by R = {(x, y): y ∈ Ai if and only if x ∈ Ai, 1 ≤ i ≤ k}. Then, R is ______.
Let R1 and R2 be two relations defined as follows :
R1 = {(a, b) ∈ R2 : a2 + b2 ∈ Q} and
R2 = {(a, b) ∈ R2 : a2 + b2 ∉ Q}, where Q is the set of all rational numbers. Then ______
Let N be the set of all natural numbers and R be a relation on N × N defined by (a, b) R (c, d) `⇔` ad = bc for all (a, b), (c, d) ∈ N × N. Show that R is an equivalence relation on N × N. Also, find the equivalence class of (2, 6), i.e., [(2, 6)].