Advertisements
Advertisements
प्रश्न
Test whether the following relation R2 is (i) reflexive (ii) symmetric and (iii) transitive:
R2 on Z defined by (a, b) ∈ R2 ⇔ |a – b| ≤ 5
उत्तर
Reflexivity:-
Let a be an arbitrary element of R2. Then,
a ∈ R2
⇒ | a−a | = 0 ≤ 5
So, R1 is reflexive.
Symmetry:-
Let (a, b) ∈ R2
⇒ |a−b| ≤ 5 [ Since, |a−b| = |b−a| ]
⇒ |b−a| ≤ 5
⇒ (b, a) ∈ R2
So, R2 is symmetric.
Transitivity:-
Let (1, 3) ∈ R2 and (3, 7) ∈R2
⇒|1−3|≤5 and |3−7|≤5
But |1−7| ≰5
⇒ (1,7) ∉ R2
So, R2 is not transitive.
APPEARS IN
संबंधित प्रश्न
Given an example of a relation. Which is Symmetric but neither reflexive nor transitive.
Given an example of a relation. Which is Reflexive and symmetric but not transitive.
Let R be the relation in the set N given by R = {(a, b): a = b − 2, b > 6}. Choose the correct answer.
Let A = {1, 2, 3}, and let R1 = {(1, 1), (1, 3), (3, 1), (2, 2), (2, 1), (3, 3)}, R2 = {(2, 2), (3, 1), (1, 3)}, R3 = {(1, 3), (3, 3)}. Find whether or not each of the relations R1, R2, R3 on A is (i) reflexive (ii) symmetric (iii) transitive.
The following relation is defined on the set of real numbers.
aRb if 1 + ab > 0
Find whether relation is reflexive, symmetric or transitive.
Show that the relation '≥' on the set R of all real numbers is reflexive and transitive but not symmetric ?
Give an example of a relation which is symmetric but neither reflexive nor transitive?
Let A = {1, 2, 3} and R = {(1, 2), (1, 1), (2, 3)} be a relation on A. What minimum number of ordered pairs may be added to R so that it may become a transitive relation on A.
Defines a relation on N :
x > y, x, y ∈ N
Determine the above relation is reflexive, symmetric and transitive.
Show that the relation R on the set Z of integers, given by
R = {(a, b) : 2 divides a – b}, is an equivalence relation.
If R and S are relations on a set A, then prove that R is reflexive and S is any relation ⇒ R ∪ S is reflexive ?
Write the domain of the relation R defined on the set Z of integers as follows:-
(a, b) ∈ R ⇔ a2 + b2 = 25
Write the identity relation on set A = {a, b, c}.
Define an equivalence relation ?
Let the relation R be defined on N by aRb iff 2a + 3b = 30. Then write R as a set of ordered pairs
If a relation R is defined on the set Z of integers as follows:
(a, b) ∈ R ⇔ a2 + b2 = 25. Then, domain (R) is ___________
The relation R defined on the set A = {1, 2, 3, 4, 5} by
R = {(a, b) : | a2 − b2 | < 16} is given by ______________ .
If A = {a, b, c}, then the relation R = {(b, c)} on A is _______________ .
A relation ϕ from C to R is defined by x ϕ y ⇔ | x | = y. Which one is correct?
Let A = {1, 2, 3} and B = {(1, 2), (2, 3), (1, 3)} be a relation on A. Then, R is ________________ .
Mark the correct alternative in the following question:
Let L denote the set of all straight lines in a plane. Let a relation R be defined by lRm if l is perpendicular to m for all l, m ∈ L. Then, R is ______________ .
Show that the relation R on the set Z of integers, given by R = {(a,b):2divides (a - b)} is an equivalence relation.
Show that the relation R on R defined as R = {(a, b): a ≤ b}, is reflexive, and transitive but not symmetric.
Show that the relation R defined by (a, b)R(c,d) ⇒ a + d = b + c on the A x A , where A = {1, 2,3,...,10} is an equivalence relation. Hence write the equivalence class [(3, 4)]; a, b, c,d ∈ A.
Let A = {0, 1, 2, 3} and define a relation R on A as follows: R = {(0, 0), (0, 1), (0, 3), (1, 0), (1, 1), (2, 2), (3, 0), (3, 3)}. Is R reflexive? symmetric? transitive?
Let Z be the set of integers and R be the relation defined in Z such that aRb if a – b is divisible by 3. Then R partitions the set Z into ______ pairwise disjoint subsets
Let R be relation defined on the set of natural number N as follows:
R = {(x, y): x ∈N, y ∈N, 2x + y = 41}. Find the domain and range of the relation R. Also verify whether R is reflexive, symmetric and transitive
Given A = {2, 3, 4}, B = {2, 5, 6, 7}. Construct an example of the following:
a mapping from A to B which is not injective
Let T be the set of all triangles in the Euclidean plane, and let a relation R on T be defined as aRb if a is congruent to b ∀ a, b ∈ T. Then R is ______.
Let R = {(3, 1), (1, 3), (3, 3)} be a relation defined on the set A = {1, 2, 3}. Then R is symmetric, transitive but not reflexive.
Let A = { 2, 3, 6 } Which of the following relations on A are reflexive?
Let T be the set of all triangles in the Euclidean plane, and let a relation R on T be defined as aRb if a is congruent to b ∀ a, b ∈ T. Then R is ____________.
Let A = {1, 2, 3, …. n} and B = {a, b}. Then the number of surjections from A into B is ____________.
Total number of equivalence relations defined in the set S = {a, b, c} is ____________.
A general election of Lok Sabha is a gigantic exercise. About 911 million people were eligible to vote and voter turnout was about 67%, the highest ever
Let I be the set of all citizens of India who were eligible to exercise their voting right in the general election held in 2019. A relation ‘R’ is defined on I as follows:
R = {(V1, V2) ∶ V1, V2 ∈ I and both use their voting right in the general election - 2019}
- Mr. Shyam exercised his voting right in General Election-2019, then Mr. Shyam is related to which of the following?
A relation 'R' in a set 'A' is called reflexive, if
Let R1 and R2 be two relations defined as follows :
R1 = {(a, b) ∈ R2 : a2 + b2 ∈ Q} and
R2 = {(a, b) ∈ R2 : a2 + b2 ∉ Q}, where Q is the set of all rational numbers. Then ______
A relation R on (1, 2, 3) is given by R = {(1, 1), (2, 2), (1, 2), (3, 3), (2, 3)}. Then the relation R is ______.