हिंदी

Let R be relation defined on the set of natural number N as follows:R = {(x, y): x ∈N, y ∈N, 2x + y = 41}. Find the domain and range of the relation R. Also verify whether R is reflexive, symmetric - Mathematics

Advertisements
Advertisements

प्रश्न

Let R be relation defined on the set of natural number N as follows:
R = {(x, y): x ∈N, y ∈N, 2x + y = 41}. Find the domain and range of the relation R. Also verify whether R is reflexive, symmetric and transitive

योग

उत्तर

Given function: R = {(x, y): x ∈ N, y ∈ N, 2x + y = 41}.

So, the domain = {1, 2, 3, ….., 20} ......[Since, y ∈ N ]

Finding the range, we have

R = {(1, 39), (2, 37), (3, 35), …., (19, 3), (20, 1)}

Thus, Range of the function = {1, 3, 5, ….., 39}

R is not reflexive as (2, 2) ∉ R as 2 × 2 + 2 ≠ 41

Also, R is not symmetric as (1, 39) ∈ R but (39, 1) ∉ R

Further R is not transitive as (11, 19) ∉ R, (19, 3) ∉ R; but (11, 3) ∉ R.

Thus, R is neither reflexive nor symmetric and nor transitive.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 1: Relations And Functions - Exercise [पृष्ठ १२]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
अध्याय 1 Relations And Functions
Exercise | Q 17 | पृष्ठ १२

संबंधित प्रश्न

determination of whether the following relations are reflexive, symmetric, and transitive:

Relation R in the set  A  = {1, 2, 3...13, 14} defined as R = {(x,y):3x - y = 0}


determination of whether the following relations are reflexive, symmetric, and transitive:

Relation R in the set Z of all integers defined as
R = {(x, y): x − y is an integer}


Check whether the relation R in R defined by R = {(a, b): a ≤ b3} is reflexive, symmetric, or transitive.


Show that the relation R in the set {1, 2, 3} given by R = {(1, 2), (2, 1)} is symmetric but neither reflexive nor transitive.


Let R be the relation in the set {1, 2, 3, 4} given by R = {(1, 2), (2, 2), (1, 1), (4, 4), (1, 3), (3, 3), (3, 2)}. Choose the correct answer.


Test whether the following relation R2 is (i) reflexive (ii) symmetric and (iii) transitive:

R2 on Z defined by (a, b) ∈ R2 ⇔ |a – b| ≤ 5


Give an example of a relation which is reflexive and transitive but not symmetric ?


Let A = {1, 2, 3} and R = {(1, 2), (1, 1), (2, 3)} be a relation on A. What minimum number of ordered pairs may be added to R so that it may become a transitive relation on A.


Let n be a fixed positive integer. Define a relation R on Z as follows:
(a, b) ∈ R ⇔ a − b is divisible by n.
Show that R is an equivalence relation on Z.


Show that the relation R, defined in the set A of all polygons as R = {(P1, P2) : P1 and P2 have same number of sides},
is an equivalence relation. What is the set of all elements in A related to the right-angled triangle T with sides 3, 4 and 5?


Define an equivalence relation ?


If A = {a, b, c}, then the relation R = {(b, c)} on A is _______________ .


If R is a relation on the set A = {1, 2, 3} given by R = {(1, 1), (2, 2), (3, 3)}, then R is ____________ .


If A = {1, 2, 3}, then a relation R = {(2, 3)} on A is _____________ .


Mark the correct alternative in the following question:

Let R be a relation on the set N of natural numbers defined by nRm if n divides m. Then, R is _____________ .


Mark the correct alternative in the following question:

Let L denote the set of all straight lines in a plane. Let a relation R be defined by lRm if l is perpendicular to m for all l, m  L. Then, R is ______________ .


Mark the correct alternative in the following question:

For real numbers x and y, define xRy if `x-y+sqrt2` is an irrational number. Then the relation R is ___________ .


Show that the relation R defined by (a, b)R(c,d) ⇒ a + d = b + c   on the A x A  , where A =  {1, 2,3,...,10}  is an equivalence relation. Hence write the equivalence class [(3, 4)]; a, b, c,d ∈ A.


Consider the set A = {1, 2, 3} and the relation R = {(1, 2), (1, 3)}. R is a transitive relation.


Consider the non-empty set consisting of children in a family and a relation R defined as aRb if a is brother of b. Then R is ______.


Let R = {(3, 1), (1, 3), (3, 3)} be a relation defined on the set A = {1, 2, 3}. Then R is symmetric, transitive but not reflexive.


A relation R on a non – empty set A is an equivalence relation if it is ____________.


Let us define a relation R in R as aRb if a ≥ b. Then R is ____________.


The relation > (greater than) on the set of real numbers is


On the set N of all natural numbers, define the relation R by a R b, if GCD of a and b is 2. Then, R is


A market research group conducted a survey of 2000 consumers and reported that 1720 consumers like product P1 and 1450 consumers like product P2. What is the least number that must have liked both the products?


Statement 1: The intersection of two equivalence relations is always an equivalence relation.

Statement 2: The Union of two equivalence relations is always an equivalence relation.

Which one of the following is correct?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×