हिंदी

If a = {1, 2, 3}, Then a Relation R = {(2, 3)} on a is (A) Symmetric and Transitive Only (B) Symmetric Only (C) Transitive Only (D) None of These - Mathematics

Advertisements
Advertisements

प्रश्न

If A = {1, 2, 3}, then a relation R = {(2, 3)} on A is _____________ .

विकल्प

  • symmetric and transitive only

  • symmetric only

  • transitive only

  • none of these

MCQ

उत्तर

transitive only

The relation R is not reflexive because every element of A is not related to itself. Also, R is not symmetric since on interchanging the elements, the ordered pair in R is not contained in it.

R is transitive by default because there is only one element in it.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 1: Relations - Exercise 1.4 [पृष्ठ ३२]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 1 Relations
Exercise 1.4 | Q 21 | पृष्ठ ३२

संबंधित प्रश्न

determination of whether the following relations are reflexive, symmetric, and transitive:

Relation R in the set  A  = {1, 2, 3...13, 14} defined as R = {(x,y):3x - y = 0}


Show that the relation R in the set A = {1, 2, 3, 4, 5} given by R = {(a, b) : |a - b| is even}, is an equivalence relation. Show that all the elements of {1, 3, 5} are related to each other and all the elements of {2, 4} are related to each other. But no element of {1, 3, 5} is related to any element of {2, 4}.


Given a non-empty set X, consider P (X), which is the set of all subsets of X. Define the relation R in P(X) as follows:

For subsets A, B in P(X), ARB if and only if A ⊂ B. Is R an equivalence relation on P(X)? Justify your answer.


Three relations R1, R2 and R3 are defined on a set A = {a, b, c} as follows:
R1 = {(a, a), (a, b), (a, c), (b, b), (b, c), (c, a), (c, b), (c, c)}
R2 = {(a, a)}
R3 = {(b, c)}
R4 = {(a, b), (b, c), (c, a)}.

Find whether or not each of the relations R1, R2, R3, R4 on A is (i) reflexive (ii) symmetric and (iii) transitive.


Is it true that every relation which is symmetric and transitive is also reflexive? Give reasons.


Let A = {1, 2, 3} and R = {(1, 2), (1, 1), (2, 3)} be a relation on A. What minimum number of ordered pairs may be added to R so that it may become a transitive relation on A.


Defines a relation on :
  x > y, x, y ∈  N

Determine the above relation is reflexive, symmetric and transitive.


Defines a relation on :

x + y = 10, xy∈ N

Determine the above relation is reflexive, symmetric and transitive.


Prove that the relation R on Z defined by
(a, b) ∈ R ⇔ a − b is divisible by 5
is an equivalence relation on Z.


Let n be a fixed positive integer. Define a relation R on Z as follows:
(a, b) ∈ R ⇔ a − b is divisible by n.
Show that R is an equivalence relation on Z.


Let Z be the set of integers. Show that the relation
 R = {(a, b) : a, b ∈ Z and a + b is even}
is an equivalence relation on Z.


m is said to be related to n if m and n are integers and m − n is divisible by 13. Does this define an equivalence relation?


Let S be a relation on the set R of all real numbers defined by
S = {(a, b) ∈ R × R : a2 + b2 = 1}
Prove that S is not an equivalence relation on R.


Write the domain of the relation R defined on the set Z of integers as follows:-
(a, b) ∈ R ⇔ a2 + b2 = 25


Let A = {2, 3, 4, 5} and B = {1, 3, 4}. If R is the relation from A to B given by a R b if "a is a divisor of b". Write R as a set of ordered pairs.


State the reason for the relation R on the set {1, 2, 3} given by R = {(1, 2), (2, 1)} to be transitive ?


Let the relation R be defined on the set A = {1, 2, 3, 4, 5} by R = {(ab) : | a2b| < 8}. Write as a set of ordered pairs.


The relation R = {(1, 1), (2, 2), (3, 3)} on the set {1, 2, 3} is ___________________ .


S is a relation over the set R of all real numbers and it is given by (a, b) ∈ S ⇔ ab ≥ 0. Then, S is _______________ .


In the set Z of all integers, which of the following relation R is not an equivalence relation ?


Mark the correct alternative in the following question:

Let R be a relation on the set N of natural numbers defined by nRm if n divides m. Then, R is _____________ .


If f (x)  = `(4x + 3)/(6x - 4) , x ≠ 2/3`, show that fof (x) = x for all ` x ≠ 2/3` . Also, find the inverse of f.


If A = {a, b, c}, B = (x , y} find A × A.


Let A = {1, 2, 3, 4}, B = {4, 5, 6}, C = {5, 6}. Find A × (B ∩ C).


Given A = {2, 3, 4}, B = {2, 5, 6, 7}. Construct an example of the following:
a mapping from B to A


The following defines a relation on N:
x is greater than y, x, y ∈ N
Determine which of the above relations are reflexive, symmetric and transitive.


Let T be the set of all triangles in the Euclidean plane, and let a relation R on T be defined as aRb if a is congruent to b ∀ a, b ∈ T. Then R is ______.


Which of the following is not an equivalence relation on I, the set of integers: x, y


Let A = {1, 2, 3} and R = {(1, 2), (2, 3), (1, 3)} be a relation on A. Then, R is ____________.


Let R be the relation “is congruent to” on the set of all triangles in a plane is ____________.


Given set A = {a, b, c}. An identity relation in set A is ____________.


A general election of Lok Sabha is a gigantic exercise. About 911 million people were eligible to vote and voter turnout was about 67%, the highest ever


Let I be the set of all citizens of India who were eligible to exercise their voting right in the general election held in 2019. A relation ‘R’ is defined on I as follows:

R = {(V1, V2) ∶ V1, V2 ∈ I and both use their voting right in the general election - 2019}

  • The above-defined relation R is ____________.

Sherlin and Danju are playing Ludo at home during Covid-19. While rolling the dice, Sherlin’s sister Raji observed and noted the possible outcomes of the throw every time belongs to set {1,2,3,4,5,6}. Let A be the set of players while B be the set of all possible outcomes.

A = {S, D}, B = {1,2,3,4,5,6}

  • Let R ∶ B → B be defined by R = {(x, y): y is divisible by x} is ____________.

The relation R = {(1,1),(2,2),(3,3)} on {1,2,3} is ____________.


If A is a finite set consisting of n elements, then the number of reflexive relations on A is


On the set N of all natural numbers, define the relation R by a R b, if GCD of a and b is 2. Then, R is


A relation 'R' in a set 'A' is called a universal relation, if each element of' A' is related to :-


Let R = {(a, b): a = a2} for all, a, b ∈ N, then R salifies.


If a relation R on the set {a, b, c} defined by R = {(b, b)}, then classify the relation.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×