हिंदी

Let Z Be the Set of Integers. Show that the Relation R = {(A, B) : A, B ∈ Z and a + B is Even} is an Equivalence Relation on Z. - Mathematics

Advertisements
Advertisements

प्रश्न

Let Z be the set of integers. Show that the relation
 R = {(a, b) : a, b ∈ Z and a + b is even}
is an equivalence relation on Z.

योग

उत्तर

We observe the following properties of R.

Reflexivity :

Let a be an arbitrary element of Z. Then,

 ∈ R

Clearly, a+2a is even for all ∈ Z.

⇒ (a, a∈ R for all ∈ Z

So, R is reflexive on Z.

Symmetry :

Let (a, b∈ R

⇒ a+b is even

⇒ b+a is even

⇒ (b, a∈ R for all a, ∈ Z

So, R is symmetric on Z.

Transitivity :

Let (a, b) and (b, c∈ R

⇒ a+b and b+c are even

Now, let a+2x  for some ∈ Z

and b+2y for some ∈ Z

Adding the above two, we get

  a+2+22y

⇒ a+(x+yb), which is even for all x, y, ∈ Z

Thus, (a, c∈ R

So, R is transitive on Z.

Hence, R is an equivalence relation on Z

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 1: Relations - Exercise 1.2 [पृष्ठ २६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 1 Relations
Exercise 1.2 | Q 5 | पृष्ठ २६

संबंधित प्रश्न

Given an example of a relation. Which is Transitive but neither reflexive nor symmetric.


Given an example of a relation. Which is  Reflexive and symmetric but not transitive.


Given an example of a relation. Which is Symmetric and transitive but not reflexive.


Let R be the relation in the set given by R = {(a, b): a = b − 2, b > 6}. Choose the correct answer.


The following relation is defined on the set of real numbers.  aRb if |a| ≤ b

Find whether relation is reflexive, symmetric or transitive.


Let O be the origin. We define a relation between two points P and Q in a plane if OP = OQ. Show that the relation, so defined is an equivalence relation.


Write the identity relation on set A = {a, b, c}.


If R = {(x, y) : x + 2y = 8} is a relation on N by, then write the range of R.


Let A = {0, 1, 2, 3} and R be a relation on A defined as
R = {(0, 0), (0, 1), (0, 3), (1, 0), (1, 1), (2, 2), (3, 0), (3, 3)}
Is R reflexive? symmetric? transitive?


R is a relation on the set Z of integers and it is given by
(x, y) ∈ R ⇔ | x − y | ≤ 1. Then, R is ______________ .


Let A = {2, 3, 4, 5, ..., 17, 18}. Let '≃' be the equivalence relation on A × A, cartesian product of Awith itself, defined by (a, b) ≃ (c, d) if ad = bc. Then, the number of ordered pairs of the equivalence class of (3, 2) is _______________ .


The relation 'R' in N × N such that
(a, b) R (c, d) ⇔ a + d = b + c is ______________ .


A relation R is defined from {2, 3, 4, 5} to {3, 6, 7, 10} by : x R y ⇔ x is relatively prime to y. Then, domain of R is ______________ .


If R is the largest equivalence relation on a set A and S is any relation on A, then _____________ .


Let R be the relation on the set A = {1, 2, 3, 4} given by R = {(1, 2), (2, 2), (1, 1), (4, 4), (1, 3), (3, 3), (3, 2)}. Then, _____________________ .


Mark the correct alternative in the following question:

The maximum number of equivalence relations on the set A = {1, 2, 3} is _______________ .


Mark the correct alternative in the following question:

Let T be the set of all triangles in the Euclidean plane, and let a relation R on T be defined as aRb if a is congruent to b for all a, b  T. Then, R is ____________ .


Show that the relation R on R defined as R = {(a, b): a ≤ b}, is reflexive, and transitive but not symmetric.


For the matrix A = `[(2,3),(5,7)]`, find (A + A') and verify that it is a symmetric matrix.


Show that the relation S in the set A = [x ∈ Z : 0 ≤ x ≤ 12] given by S = [(a, b) : a, b ∈ Z, ∣a − b∣ is divisible by 3] is an equivalence relation.


Let A = {1, 2, 3, 4}, B = {4, 5, 6}, C = {5, 6}. Find (A × B) ∪ (A × C).


Let R be a relation on the set N of natural numbers defined by nRm if n divides m. Then R is ______.


Consider the set A = {1, 2, 3} and the relation R = {(1, 2), (1, 3)}. R is a transitive relation.


Let A = {a, b, c} and the relation R be defined on A as follows:
R = {(a, a), (b, c), (a, b)}.
Then, write minimum number of ordered pairs to be added in R to make R reflexive and transitive


If A = {1, 2, 3, 4 }, define relations on A which have properties of being: 
symmetric but neither reflexive nor transitive


Let T be the set of all triangles in the Euclidean plane, and let a relation R on T be defined as aRb if a is congruent to b ∀ a, b ∈ T. Then R is ______.


Every relation which is symmetric and transitive is also reflexive.


Let A = { 2, 3, 6 } Which of the following relations on A are reflexive?


Let `"f"("x") = ("x" - 1)/("x" + 1),` then f(f(x)) is ____________.


Let R be the relation “is congruent to” on the set of all triangles in a plane is ____________.


The relation R is defined on the set of natural numbers as {(a, b) : a = 2b}. Then, R-1 is given by ____________.


Sherlin and Danju are playing Ludo at home during Covid-19. While rolling the dice, Sherlin’s sister Raji observed and noted the possible outcomes of the throw every time belongs to set {1,2,3,4,5,6}. Let A be the set of players while B be the set of all possible outcomes.

A = {S, D}, B = {1,2,3,4,5,6}

  • Let R: B → B be defined by R = {(1,1),(1,2), (2,2), (3,3), (4,4), (5,5), (6,6)}, then R is ____________.

The relation > (greater than) on the set of real numbers is


In a group of 52 persons, 16 drink tea but not coffee, while 33 drink tea. How many persons drink coffee but not tea?


Let R = {(a, b): a = a2} for all, a, b ∈ N, then R salifies.


Define the relation R in the set N × N as follows:

For (a, b), (c, d) ∈ N × N, (a, b) R (c, d) if ad = bc. Prove that R is an equivalence relation in N × N.


Let A = {3, 5}. Then number of reflexive relations on A is ______.


Let N be the set of all natural numbers and R be a relation on N × N defined by (a, b) R (c, d) `⇔` ad = bc for all (a, b), (c, d) ∈ N × N. Show that R is an equivalence relation on N × N. Also, find the equivalence class of (2, 6), i.e., [(2, 6)].


If a relation R on the set {a, b, c} defined by R = {(b, b)}, then classify the relation.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×