Advertisements
Advertisements
प्रश्न
Let Z be the set of integers. Show that the relation
R = {(a, b) : a, b ∈ Z and a + b is even}
is an equivalence relation on Z.
उत्तर
We observe the following properties of R.
Reflexivity :
Let a be an arbitrary element of Z. Then,
a ∈ R
Clearly, a+a = 2a is even for all a ∈ Z.
⇒ (a, a) ∈ R for all a ∈ Z
So, R is reflexive on Z.
Symmetry :
Let (a, b) ∈ R
⇒ a+b is even
⇒ b+a is even
⇒ (b, a) ∈ R for all a, b ∈ Z
So, R is symmetric on Z.
Transitivity :
Let (a, b) and (b, c) ∈ R
⇒ a+b and b+c are even
Now, let a+b = 2x for some x ∈ Z
and b+c = 2y for some y ∈ Z
Adding the above two, we get
a+2b +c = 2x + 2y
⇒ a+c = 2 (x+y−b), which is even for all x, y, b ∈ Z
Thus, (a, c) ∈ R
So, R is transitive on Z.
Hence, R is an equivalence relation on Z
APPEARS IN
संबंधित प्रश्न
Given an example of a relation. Which is Transitive but neither reflexive nor symmetric.
Given an example of a relation. Which is Reflexive and symmetric but not transitive.
Given an example of a relation. Which is Symmetric and transitive but not reflexive.
Let R be the relation in the set N given by R = {(a, b): a = b − 2, b > 6}. Choose the correct answer.
The following relation is defined on the set of real numbers. aRb if |a| ≤ b
Find whether relation is reflexive, symmetric or transitive.
Let O be the origin. We define a relation between two points P and Q in a plane if OP = OQ. Show that the relation, so defined is an equivalence relation.
Write the identity relation on set A = {a, b, c}.
If R = {(x, y) : x + 2y = 8} is a relation on N by, then write the range of R.
Let A = {0, 1, 2, 3} and R be a relation on A defined as
R = {(0, 0), (0, 1), (0, 3), (1, 0), (1, 1), (2, 2), (3, 0), (3, 3)}
Is R reflexive? symmetric? transitive?
R is a relation on the set Z of integers and it is given by
(x, y) ∈ R ⇔ | x − y | ≤ 1. Then, R is ______________ .
Let A = {2, 3, 4, 5, ..., 17, 18}. Let '≃' be the equivalence relation on A × A, cartesian product of Awith itself, defined by (a, b) ≃ (c, d) if ad = bc. Then, the number of ordered pairs of the equivalence class of (3, 2) is _______________ .
The relation 'R' in N × N such that
(a, b) R (c, d) ⇔ a + d = b + c is ______________ .
A relation R is defined from {2, 3, 4, 5} to {3, 6, 7, 10} by : x R y ⇔ x is relatively prime to y. Then, domain of R is ______________ .
If R is the largest equivalence relation on a set A and S is any relation on A, then _____________ .
Let R be the relation on the set A = {1, 2, 3, 4} given by R = {(1, 2), (2, 2), (1, 1), (4, 4), (1, 3), (3, 3), (3, 2)}. Then, _____________________ .
Mark the correct alternative in the following question:
The maximum number of equivalence relations on the set A = {1, 2, 3} is _______________ .
Mark the correct alternative in the following question:
Let T be the set of all triangles in the Euclidean plane, and let a relation R on T be defined as aRb if a is congruent to b for all a, b T. Then, R is ____________ .
Show that the relation R on R defined as R = {(a, b): a ≤ b}, is reflexive, and transitive but not symmetric.
For the matrix A = `[(2,3),(5,7)]`, find (A + A') and verify that it is a symmetric matrix.
Show that the relation S in the set A = [x ∈ Z : 0 ≤ x ≤ 12] given by S = [(a, b) : a, b ∈ Z, ∣a − b∣ is divisible by 3] is an equivalence relation.
Let A = {1, 2, 3, 4}, B = {4, 5, 6}, C = {5, 6}. Find (A × B) ∪ (A × C).
Let R be a relation on the set N of natural numbers defined by nRm if n divides m. Then R is ______.
Consider the set A = {1, 2, 3} and the relation R = {(1, 2), (1, 3)}. R is a transitive relation.
Let A = {a, b, c} and the relation R be defined on A as follows:
R = {(a, a), (b, c), (a, b)}.
Then, write minimum number of ordered pairs to be added in R to make R reflexive and transitive
If A = {1, 2, 3, 4 }, define relations on A which have properties of being:
symmetric but neither reflexive nor transitive
Let T be the set of all triangles in the Euclidean plane, and let a relation R on T be defined as aRb if a is congruent to b ∀ a, b ∈ T. Then R is ______.
Every relation which is symmetric and transitive is also reflexive.
Let A = { 2, 3, 6 } Which of the following relations on A are reflexive?
Let `"f"("x") = ("x" - 1)/("x" + 1),` then f(f(x)) is ____________.
Let R be the relation “is congruent to” on the set of all triangles in a plane is ____________.
The relation R is defined on the set of natural numbers as {(a, b) : a = 2b}. Then, R-1 is given by ____________.
Sherlin and Danju are playing Ludo at home during Covid-19. While rolling the dice, Sherlin’s sister Raji observed and noted the possible outcomes of the throw every time belongs to set {1,2,3,4,5,6}. Let A be the set of players while B be the set of all possible outcomes.
A = {S, D}, B = {1,2,3,4,5,6}
- Let R: B → B be defined by R = {(1,1),(1,2), (2,2), (3,3), (4,4), (5,5), (6,6)}, then R is ____________.
The relation > (greater than) on the set of real numbers is
In a group of 52 persons, 16 drink tea but not coffee, while 33 drink tea. How many persons drink coffee but not tea?
Let R = {(a, b): a = a2} for all, a, b ∈ N, then R salifies.
Define the relation R in the set N × N as follows:
For (a, b), (c, d) ∈ N × N, (a, b) R (c, d) if ad = bc. Prove that R is an equivalence relation in N × N.
Let A = {3, 5}. Then number of reflexive relations on A is ______.
Let N be the set of all natural numbers and R be a relation on N × N defined by (a, b) R (c, d) `⇔` ad = bc for all (a, b), (c, d) ∈ N × N. Show that R is an equivalence relation on N × N. Also, find the equivalence class of (2, 6), i.e., [(2, 6)].
If a relation R on the set {a, b, c} defined by R = {(b, b)}, then classify the relation.