हिंदी

Given an Example of a Relation. Which Is Transitive but Neither Reflexive Nor Symmetric. - Mathematics

Advertisements
Advertisements

प्रश्न

Given an example of a relation. Which is Transitive but neither reflexive nor symmetric.

उत्तर

Consider a relation R in defined as:

R = {(ab): a < b}

For any ∈ R, we have (aa) ∉ R since a cannot be strictly less than a itself. In fact, a = a.

∴ R is not reflexive.

Now,

(1, 2) ∈ R (as 1 < 2)

But, 2 is not less than 1.

∴ (2, 1) ∉ R

∴ R is not symmetric.

Now, let (ab), (bc) ∈ R.

⇒ a < b and b < c

⇒ a < c

⇒ (ac) ∈ R

∴R is transitive.

Hence, relation R is transitive but not reflexive and symmetric.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 1: Relations and Functions - Exercise 1.1 [पृष्ठ ६]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 12
अध्याय 1 Relations and Functions
Exercise 1.1 | Q 10.2 | पृष्ठ ६

संबंधित प्रश्न

determination of whether the following relations are reflexive, symmetric, and transitive:

Relation R in the set A of human beings in a town at a particular time given by (c) R = {(x, y): x is exactly 7 cm taller than y}


Given an example of a relation. Which is Reflexive and transitive but not symmetric.


Let R be the relation in the set {1, 2, 3, 4} given by R = {(1, 2), (2, 2), (1, 1), (4, 4), (1, 3), (3, 3), (3, 2)}. Choose the correct answer.


The binary operation *: R x R → R is defined as a *b = 2a + b Find (2 * 3)*4


Let A be the set of all human beings in a town at a particular time. Determine whether of the following relation is reflexive, symmetric and transitive:

R = {(x, y) : x is father of and y}


If = {1, 2, 3, 4} define relations on A which have properties of being reflexive, transitive but not symmetric ?


If = {1, 2, 3, 4} define relations on A which have properties of being symmetric but neither reflexive nor transitive ?


Is it true that every relation which is symmetric and transitive is also reflexive? Give reasons.


Given the relation R = {(1, 2), (2, 3)} on the set A = {1, 2, 3}, add a minimum number of ordered pairs so that the enlarged relation is symmeteric, transitive and reflexive.


Defines a relation on :
  x > y, x, y ∈  N

Determine the above relation is reflexive, symmetric and transitive.


Let R be a relation on the set A of ordered pair of integers defined by (x, y) R (u, v) if xv = yu. Show that R is an equivalence relation.


Let R = {(x, y) : |x2 − y2| <1) be a relation on set A = {1, 2, 3, 4, 5}. Write R as a set of ordered pairs.


A = {1, 2, 3, 4, 5, 6, 7, 8} and if R = {(xy) : y is one half of xxy ∈ A} is a relation on A, then write R as a set of ordered pairs.


For the set A = {1, 2, 3}, define a relation R on the set A as follows:
R = {(1, 1), (2, 2), (3, 3), (1, 3)}
Write the ordered pairs to be added to R to make the smallest equivalence relation.


Let the relation R be defined on N by aRb iff 2a + 3b = 30. Then write R as a set of ordered pairs


Let R be a relation on the set N given by
R = {(a, b) : a = b − 2, b > 6}. Then,


The relation 'R' in N × N such that
(a, b) R (c, d) ⇔ a + d = b + c is ______________ .


If A = {1, 2, 3}, B = {1, 4, 6, 9} and R is a relation from A to B defined by 'x is greater than y'. The range of R is ______________ .


A relation R is defined from {2, 3, 4, 5} to {3, 6, 7, 10} by : x R y ⇔ x is relatively prime to y. Then, domain of R is ______________ .


R is a relation from {11, 12, 13} to {8, 10, 12} defined by y = x − 3. Then, R−1 is ______________ .


If R is the largest equivalence relation on a set A and S is any relation on A, then _____________ .


If R is a relation on the set A = {1, 2, 3, 4, 5, 6, 7, 8, 9} given by x R y ⇔ y = 3 x, then R = _____________ .


The relation R = {(1, 1), (2, 2), (3, 3)} on the set {1, 2, 3} is ___________________ .


Mark the correct alternative in the following question:

Let A = {1, 2, 3} and consider the relation R = {(1, 1), (2, 2), (3, 3), (1, 2), (2, 3), (1, 3)}. Then, R is _______________ .


Mark the correct alternative in the following question:

For real numbers x and y, define xRy if `x-y+sqrt2` is an irrational number. Then the relation R is ___________ .


If f (x)  = `(4x + 3)/(6x - 4) , x ≠ 2/3`, show that fof (x) = x for all ` x ≠ 2/3` . Also, find the inverse of f.


Let A = {1, 2, 3, 4}, B = {4, 5, 6}, C = {5, 6}. Find A × (B ∪ C).


In the set of natural numbers N, define a relation R as follows: ∀ n, m ∈ N, nRm if on division by 5 each of the integers n and m leaves the remainder less than 5, i.e. one of the numbers 0, 1, 2, 3 and 4. Show that R is equivalence relation. Also, obtain the pairwise disjoint subsets determined by R


Let L denote the set of all straight lines in a plane. Let a relation R be defined by lRm if and only if l is perpendicular to m ∀ l, m ∈ L. Then R is ______.


Consider the set A = {1, 2, 3} and the relation R = {(1, 2), (1, 3)}. R is a transitive relation.


If a relation R on the set {1, 2, 3} be defined by R = {(1, 2)}, then R is ______.


Let the relation R be defined in N by aRb if 2a + 3b = 30. Then R = ______.


Let the relation R be defined on the set A = {1, 2, 3, 4, 5} by R = {(a, b) : |a2 – b2| < 8. Then R is given by ______.


Let us define a relation R in R as aRb if a ≥ b. Then R is ____________.


Let A = {1, 2, 3} and consider the relation R = {(1, 1), (2, 2), (3, 3), (1, 2), (2, 3), (1, 3)}. Then R is ____________.


Given set A = {a, b, c}. An identity relation in set A is ____________.


In a group of 52 persons, 16 drink tea but not coffee, while 33 drink tea. How many persons drink coffee but not tea?


Let A = {3, 5}. Then number of reflexive relations on A is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×