Advertisements
Advertisements
प्रश्न
determination of whether the following relations are reflexive, symmetric, and transitive:
Relation R in the set A of human beings in a town at a particular time given by (c) R = {(x, y): x is exactly 7 cm taller than y}
उत्तर
(i) Reflexive:
R = {(x, y): x is exactly 7 cm taller than y}
Now,
(x, x) ∉ R
Since human being x cannot be taller than himself.
∴R is not reflexive.
(ii) Symmetric:
Now, let (x, y) ∈R.
⇒ x is exactly 7 cm taller than y.
Then, y is not taller than x.
∴ (y, x) ∉R
Indeed if x is exactly 7 cm taller than y, then y is exactly 7 cm shorter than x.
∴R is not symmetric.
(iii) Transitive:
Now, Let (x, y), (y, z) ∈ R.
⇒ x is exactly 7 cm taller than y, and y is exactly 7 cm taller than z.
⇒ x is exactly 14 cm taller than z .
∴(x, z) ∉R
∴ R is not transitive.
Hence R is not reflexive, not symmetric and not transitive.
APPEARS IN
संबंधित प्रश्न
determination of whether the following relations are reflexive, symmetric, and transitive:
Relation R in the set Z of all integers defined as
R = {(x, y): x − y is an integer}
Show that the relation R in the set R of real numbers, defined as R = {(a, b): a ≤ b2} is neither reflexive nor symmetric nor transitive.
Check whether the relation R defined in the set {1, 2, 3, 4, 5, 6} as R = {(a, b): b = a + 1} is reflexive, symmetric, or transitive.
Show that each of the relation R in the set A= {x ∈ Z : 0 ≤ x ≤ = 12} given by R = {(a, b) : |a - b| is a multiple of 4} is an equivalence relation. Find the set of all elements related to 1 in each case.
Given an example of a relation. Which is Symmetric but neither reflexive nor transitive.
Given an example of a relation. Which is Reflexive and symmetric but not transitive.
Given an example of a relation. Which is Reflexive and transitive but not symmetric.
Let A = {x ∈ Z : 0 ≤ x ≤ 12}. Show that R = {(a, b) : a, b ∈ A, |a – b| is divisible by 4}is an equivalence relation. Find the set of all elements related to 1. Also write the equivalence class [2]
Let A = {1, 2, 3}, and let R1 = {(1, 1), (1, 3), (3, 1), (2, 2), (2, 1), (3, 3)}, R2 = {(2, 2), (3, 1), (1, 3)}, R3 = {(1, 3), (3, 3)}. Find whether or not each of the relations R1, R2, R3 on A is (i) reflexive (ii) symmetric (iii) transitive.
If A = {1, 2, 3, 4} define relations on A which have properties of being reflexive, symmetric and transitive ?
Show that the relation '≥' on the set R of all real numbers is reflexive and transitive but not symmetric ?
Give an example of a relation which is symmetric but neither reflexive nor transitive?
Let A = {1, 2, 3} and R = {(1, 2), (1, 1), (2, 3)} be a relation on A. What minimum number of ordered pairs may be added to R so that it may become a transitive relation on A.
Defines a relation on N :
x > y, x, y ∈ N
Determine the above relation is reflexive, symmetric and transitive.
Defines a relation on N :
x + y = 10, x, y∈ N
Determine the above relation is reflexive, symmetric and transitive.
Prove that the relation R on Z defined by
(a, b) ∈ R ⇔ a − b is divisible by 5
is an equivalence relation on Z.
Write the domain of the relation R defined on the set Z of integers as follows:-
(a, b) ∈ R ⇔ a2 + b2 = 25
If R = {(x, y) : x2 + y2 ≤ 4; x, y ∈ Z} is a relation on Z, write the domain of R.
Let A = {2, 3, 4, 5} and B = {1, 3, 4}. If R is the relation from A to B given by a R b if "a is a divisor of b". Write R as a set of ordered pairs.
Let R be the equivalence relation on the set Z of the integers given by R = { (a, b) : 2 divides a - b }.
Write the equivalence class [0].
Let A = {2, 3, 4, 5, ..., 17, 18}. Let '≃' be the equivalence relation on A × A, cartesian product of Awith itself, defined by (a, b) ≃ (c, d) if ad = bc. Then, the number of ordered pairs of the equivalence class of (3, 2) is _______________ .
If R is a relation on the set A = {1, 2, 3, 4, 5, 6, 7, 8, 9} given by x R y ⇔ y = 3 x, then R = _____________ .
Mark the correct alternative in the following question:
Consider a non-empty set consisting of children in a family and a relation R defined as aRb if a is brother of b. Then, R is _____________ .
Mark the correct alternative in the following question:
For real numbers x and y, define xRy if `x-y+sqrt2` is an irrational number. Then the relation R is ___________ .
Show that the relation R on R defined as R = {(a, b): a ≤ b}, is reflexive, and transitive but not symmetric.
If A = {a, b, c}, B = (x , y} find A × B.
If A = {a, b, c}, B = (x , y} find A × A.
Let A = {1, 2, 3, 4}, B = {4, 5, 6}, C = {5, 6}. Find A × (B ∩ C).
Let A = {1, 2, 3, 4}, B = {4, 5, 6}, C = {5, 6}. Find A × (B ∪ C).
Consider the non-empty set consisting of children in a family and a relation R defined as aRb if a is brother of b. Then R is ______.
Let the relation R be defined in N by aRb if 2a + 3b = 30. Then R = ______.
R = {(1, 1), (2, 2), (1, 2), (2, 1), (2, 3)} be a relation on A, then R is ____________.
A relation R on a non – empty set A is an equivalence relation if it is ____________.
Let S = {1, 2, 3, 4, 5} and let A = S x S. Define the relation R on A as follows:
(a, b) R (c, d) iff ad = cb. Then, R is ____________.
Students of Grade 9, planned to plant saplings along straight lines, parallel to each other to one side of the playground ensuring that they had enough play area. Let us assume that they planted one of the rows of the saplings along the line y = x − 4. Let L be the set of all lines which are parallel on the ground and R be a relation on L.
Answer the following using the above information.
- Let R = `{ ("L"_1, "L"_2) ∶ "L"_1 bot "L"_2 "where" "L"_1, "L"_2 in "L" }` which of the following is true?
Which one of the following relations on the set of real numbers R is an equivalence relation?
There are 600 student in a school. If 400 of them can speak Telugu, 300 can speak Hindi, then the number of students who can speak both Telugu and Hindi is: