Advertisements
Advertisements
प्रश्न
Let A = {x ∈ Z : 0 ≤ x ≤ 12}. Show that R = {(a, b) : a, b ∈ A, |a – b| is divisible by 4}is an equivalence relation. Find the set of all elements related to 1. Also write the equivalence class [2]
उत्तर
A={0,1,2,3,4,5,6,7,8,9,10,11,12}
R={(a,b):a,b ∈ Z, |a−b| is divisible by 4}
For reflexive,
for every a ∈ A
|a−a| = 0 which is divisible by 4
then (a,a) ∈ R
Hence, it is reflexive.
For symmetric
If (a,b) ∈ R then (b,a) ∈ R
|a−b| = |b−a|
Hence, it is symmetric.
For transitive
If (a,b) ∈ R ⇒ |a−b| is divisible by 4 (Say |a−b|=4k1 ⇒ a−b = ±4k1)
and (b,c) ∈ R ⇒|b−c| is divisible by 4 (Say |b−c| = 4k2 ⇒ b−c = ±4k2)
∴|a−c|=|±4k1 ± 4k2| which is divisible by 4
then (a,c) ∈ R
Hence, it is transitive.
Also, the relation is the equivalence.
Set of elements related to 1 is {(1,1),(1,5),(1,9),(5,1),(9,1)}
Let (x,2) ∈ R; (x ∈ A)
|x−2|= 4k (k is whole number, k≤3)
∴ x=2,6,10
Equivalence class [2] is {2,6,10}
APPEARS IN
संबंधित प्रश्न
Let N denote the set of all natural numbers and R be the relation on N × N defined by (a, b) R (c, d) if ad (b + c) = bc (a + d). Show that R is an equivalence relation.
If R=[(x, y) : x+2y=8] is a relation on N, write the range of R.
Show that each of the relation R in the set A= {x ∈ Z : 0 ≤ x ≤ = 12} given by R = {(a, b) : |a - b| is a multiple of 4} is an equivalence relation. Find the set of all elements related to 1 in each case.
Let R be the relation in the set {1, 2, 3, 4} given by R = {(1, 2), (2, 2), (1, 1), (4, 4), (1, 3), (3, 3), (3, 2)}. Choose the correct answer.
The binary operation *: R x R → R is defined as a *b = 2a + b Find (2 * 3)*4
Prove that every identity relation on a set is reflexive, but the converse is not necessarily true.
Defines a relation on N :
x + y = 10, x, y∈ N
Determine the above relation is reflexive, symmetric and transitive.
Defines a relation on N:
x + 4y = 10, x, y ∈ N
Determine the above relation is reflexive, symmetric and transitive.
If R and S are relations on a set A, then prove that R is reflexive and S is any relation ⇒ R ∪ S is reflexive ?
Write the identity relation on set A = {a, b, c}.
A = {1, 2, 3, 4, 5, 6, 7, 8} and if R = {(x, y) : y is one half of x; x, y ∈ A} is a relation on A, then write R as a set of ordered pairs.
Let R be the equivalence relation on the set Z of the integers given by R = { (a, b) : 2 divides a - b }.
Write the equivalence class [0].
Let R be the relation over the set of all straight lines in a plane such that l1 R l2 ⇔ l 1⊥ l2. Then, R is _____________ .
The relation 'R' in N × N such that
(a, b) R (c, d) ⇔ a + d = b + c is ______________ .
Let R = {(a, a), (b, b), (c, c), (a, b)} be a relation on set A = a, b, c. Then, R is _______________ .
If R is a relation on the set A = {1, 2, 3} given by R = {(1, 1), (2, 2), (3, 3)}, then R is ____________ .
Mark the correct alternative in the following question:
Let A = {1, 2, 3} and consider the relation R = {(1, 1), (2, 2), (3, 3), (1, 2), (2, 3), (1, 3)}. Then, R is _______________ .
Mark the correct alternative in the following question:
Let R be a relation on the set N of natural numbers defined by nRm if n divides m. Then, R is _____________ .
Show that the relation R on the set Z of all integers, given by R = {(a,b) : 2 divides (a-b)} is an equivalence relation.
R = {(a, b) / b = a + 1, a ∈ Z, 0 < a < 5}. Find the Range of R.
Let R be a relation on the set N of natural numbers defined by nRm if n divides m. Then R is ______.
For real numbers x and y, define xRy if and only if x – y + `sqrt(2)` is an irrational number. Then the relation R is ______.
Let A = {a, b, c} and the relation R be defined on A as follows:
R = {(a, a), (b, c), (a, b)}.
Then, write minimum number of ordered pairs to be added in R to make R reflexive and transitive
If A = {1, 2, 3, 4 }, define relations on A which have properties of being:
reflexive, transitive but not symmetric
Give an example of a map which is one-one but not onto
The maximum number of equivalence relations on the set A = {1, 2, 3} are ______.
Let A = {1, 2, 3, …. n} and B = {a, b}. Then the number of surjections from A into B is ____________.
Let S = {1, 2, 3, 4, 5} and let A = S x S. Define the relation R on A as follows:
(a, b) R (c, d) iff ad = cb. Then, R is ____________.
The relation R = {(1,1),(2,2),(3,3)} on {1,2,3} is ____________.
A relation 'R' in a set 'A' is called a universal relation, if each element of' A' is related to :-