Advertisements
Advertisements
Question
Let A = {x ∈ Z : 0 ≤ x ≤ 12}. Show that R = {(a, b) : a, b ∈ A, |a – b| is divisible by 4}is an equivalence relation. Find the set of all elements related to 1. Also write the equivalence class [2]
Solution
A={0,1,2,3,4,5,6,7,8,9,10,11,12}
R={(a,b):a,b ∈ Z, |a−b| is divisible by 4}
For reflexive,
for every a ∈ A
|a−a| = 0 which is divisible by 4
then (a,a) ∈ R
Hence, it is reflexive.
For symmetric
If (a,b) ∈ R then (b,a) ∈ R
|a−b| = |b−a|
Hence, it is symmetric.
For transitive
If (a,b) ∈ R ⇒ |a−b| is divisible by 4 (Say |a−b|=4k1 ⇒ a−b = ±4k1)
and (b,c) ∈ R ⇒|b−c| is divisible by 4 (Say |b−c| = 4k2 ⇒ b−c = ±4k2)
∴|a−c|=|±4k1 ± 4k2| which is divisible by 4
then (a,c) ∈ R
Hence, it is transitive.
Also, the relation is the equivalence.
Set of elements related to 1 is {(1,1),(1,5),(1,9),(5,1),(9,1)}
Let (x,2) ∈ R; (x ∈ A)
|x−2|= 4k (k is whole number, k≤3)
∴ x=2,6,10
Equivalence class [2] is {2,6,10}
APPEARS IN
RELATED QUESTIONS
determination of whether the following relations are reflexive, symmetric, and transitive:
Relation R in the set A of human beings in a town at a particular time given by (c) R = {(x, y): x is exactly 7 cm taller than y}
Given an example of a relation. Which is Reflexive and symmetric but not transitive.
Show that the relation R defined in the set A of all polygons as R = {(P1, P2): P1 and P2have same number of sides}, is an equivalence relation. What is the set of all elements in A related to the right angle triangle T with sides 3, 4 and 5?
Let A be the set of all human beings in a town at a particular time. Determine whether of the following relation is reflexive, symmetric and transitive :
R = {(x, y) : x and y work at the same place}
The following relation is defined on the set of real numbers.
aRb if a – b > 0
Find whether relation is reflexive, symmetric or transitive.
If A = {1, 2, 3, 4} define relations on A which have properties of being symmetric but neither reflexive nor transitive ?
An integer m is said to be related to another integer n if m is a multiple of n. Check if the relation is symmetric, reflexive and transitive.
Show that the relation R on the set Z of integers, given by
R = {(a, b) : 2 divides a – b}, is an equivalence relation.
Show that the relation R, defined in the set A of all polygons as R = {(P1, P2) : P1 and P2 have same number of sides},
is an equivalence relation. What is the set of all elements in A related to the right-angled triangle T with sides 3, 4 and 5?
If R and S are relations on a set A, then prove that R and S are symmetric ⇒ R ∩ S and R ∪ S are symmetric ?
Let A = {2, 3, 4, 5} and B = {1, 3, 4}. If R is the relation from A to B given by a R b if "a is a divisor of b". Write R as a set of ordered pairs.
Let A = {1, 2, 3}. Then, the number of relations containing (1, 2) and (1, 3) which are reflexive and symmetric but not transitive is ______.
A relation R is defined from {2, 3, 4, 5} to {3, 6, 7, 10} by : x R y ⇔ x is relatively prime to y. Then, domain of R is ______________ .
R is a relation from {11, 12, 13} to {8, 10, 12} defined by y = x − 3. Then, R−1 is ______________ .
If A = {a, b, c, d}, then a relation R = {(a, b), (b, a), (a, a)} on A is _____________ .
If A = {1, 2, 3}, then a relation R = {(2, 3)} on A is _____________ .
Let R be the relation on the set A = {1, 2, 3, 4} given by R = {(1, 2), (2, 2), (1, 1), (4, 4), (1, 3), (3, 3), (3, 2)}. Then, _____________________ .
Mark the correct alternative in the following question:
The maximum number of equivalence relations on the set A = {1, 2, 3} is _______________ .
Mark the correct alternative in the following question:
Let L denote the set of all straight lines in a plane. Let a relation R be defined by lRm if l is perpendicular to m for all l, m ∈ L. Then, R is ______________ .
Mark the correct alternative in the following question:
For real numbers x and y, define xRy if `x-y+sqrt2` is an irrational number. Then the relation R is ___________ .
Show that the relation R defined by (a, b)R(c,d) ⇒ a + d = b + c on the A x A , where A = {1, 2,3,...,10} is an equivalence relation. Hence write the equivalence class [(3, 4)]; a, b, c,d ∈ A.
Let A = {1, 2, 3, 4}, B = {4, 5, 6}, C = {5, 6} Find (A × B) ∩ (A × C).
Let Z be the set of integers and R be the relation defined in Z such that aRb if a – b is divisible by 3. Then R partitions the set Z into ______ pairwise disjoint subsets
If A = {1, 2, 3, 4 }, define relations on A which have properties of being:
reflexive, symmetric and transitive
If A is a finite set containing n distinct elements, then the number of relations on A is equal to ____________.
Sherlin and Danju are playing Ludo at home during Covid-19. While rolling the dice, Sherlin’s sister Raji observed and noted the possible outcomes of the throw every time belongs to set {1,2,3,4,5,6}. Let A be the set of players while B be the set of all possible outcomes.
A = {S, D}, B = {1,2,3,4,5,6}
- Let R: B → B be defined by R = {(1,1),(1,2), (2,2), (3,3), (4,4), (5,5), (6,6)}, then R is ____________.
On the set N of all natural numbers, define the relation R by a R b, if GCD of a and b is 2. Then, R is
Which of the following is/are example of symmetric
Let R = {(a, b): a = a2} for all, a, b ∈ N, then R salifies.
Let L be a set of all straight lines in a plane. The relation R on L defined as 'perpendicular to' is ______.